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	 The SARS-Cov-2 (COVID-19) pandemic remains a major 

worldwide public health issue. Initially, improved supportive 

and anti-inflammatory intervention, often employing known 

drugs or technologies, provided measurable improvement 

in management. We have recently seen advances in specific 

therapeutic interventions and in vaccines. Nevertheless, it 

will be months before most of the world’s population can 

be vaccinated to achieve herd immunity. In the interim, 

hyperbaric oxygen (HBO2) treatment offers several poten-

tially beneficial therapeutic effects. Three small published 

series, one with a propensity-score-matched control group, 

have demonstrated safety and initial efficacy. Additional 

anecdotal reports are consistent with these publications. 

HBO2 delivers oxygen in extreme conditions of hypoxemia 

INTRODUCTION
As SARS-CoV-2 infection (COVID-19) rates accelerated 
in early 2020 many patients deteriorated rapidly, became 
ventilator-dependent, and died. Clinicians and medical 
researchers sought to develop strategies to treat and 
prevent this new worldwide public health threat. Initial-
ly they employed existing technologies and medications 
because no specific therapies were available, and care 
was mostly supportive. Some inquired about and even 

and tissue hypoxia, even in the presence of lung pathology. 

It provides anti-inflammatory and anti-proinflammatory 

effects likely to ameliorate the overexuberant immune response 

common to COVID-19. Unlike steroids, it exerts these effects 

without immune suppression. One study suggests HBO2 may 

reduce the hypercoagulability seen in COVID patients. Also, hy-

perbaric oxygen offers a likely successful intervention to address 

the oxygen debt expected to arise from a prolonged period of 

hypoxemia and tissue hypoxia. To date, 11 studies designed to in-

vestigate the impact of HBO2 on patients infected with SARS-Cov-2 

have been posted on clinicaltrials.gov. This paper describes the 

promising physiologic and biochemical effects of hyperbaric ox-

ygen in COVID-19 and potentially in other disorders with similar 

pathologic mechanisms.  z 

ABSTRACT

____________________________________________________________________________________________________________________________________________________________________

recommended hyperbaric oxygen (HBO2) therapy be-
cause of its demonstrated success in providing oxygen 
and reducing end-organ damage in patients with severe 
hypoxemia due to carbon monoxide poisoning or severe 
anemia [1]. These inquiries came as both questions and 
suggestions addressed to the Undersea and Hyperbaric 
Medical Society’s (UHMS) Medical Frequent Asked 
Questions (MEDFAQs) program and as telephone con-
tacts to the UHMS Home Office from callers including 
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the current President of the American Board of Preven-
tive Medicine (ABPM), who is also a past president of 
the Aerospace Medical Association and a senior repre-
sentative of the Office of Naval Research [2]. 
	 A publication from China reported dramatic results 
in five critically ill patients treated with HBO2 [3]. A sec-
ond five-patient case series published by Thibodeaux, et 
al. showed that patients who received hyperbaric oxygen 
when intubation seemed imminent were able to avoid 
mechanical ventilation [4]. Gorenstein and colleagues 
reported a study of 20 patients treated with hyperbaric 
oxygen compared to propensity score-matched controls. 
They concluded that HBO2 is safe and possibly effective 
[5]. Additional unpublished anecdotal reports aggregating 
a total 70 patients show impressive and rapid improve-
ment in compromised patients even in the setting of 
progressive respiratory failure [6-9]. A typical course of 
hyperbaric oxygen in these series was five daily treat-
ments at 2.0 ATA pressure. Early on, two prominent 
hyperbaric experts discussed issues related to treating 
COVID-19 with hyperbaric oxygen and noted that the 
UHMS position statement recommended treatment only 
within clinical trials [10]. 
	 One author of this document (DD) shared her per-
sonal experiences treating 19 COVID-19 patients with 
hyperbaric oxygen [6], which included transcutaneous 
oxygen for patient monitoring. These measurements were 
done during and after hyperbaric treatment and upon re-
turning the patient to the ICU or hospital bed. She ob-
served that transcutaneous oxygen proved useful as a 
monitoring tool [6], and outcomes were favorable. Two 
prior publications have reported experiences in applying 
transcutaneous oxygen measurements as a monitoring 
tool in critically ill patients [11,12]. 
	 The incidence of COVID-19 has continued to increase, 
with recent post-holiday spikes, which has led to a 
much-improved understanding of which treatments 
are effective and which are not. Much of this evolution 
in treatment has been through using known medications 
in new applications. The National Institutes of Health 
(NIH) has published and continuously updates its Coro-
navirus Disease 2019 (COVID-19) Treatment Guidelines 
(accessed on 26 December 2020) [13]. This publication 
provides broad guidance on the management of patients 
with COVID-19. Specific guidance is given for pharma-
cologic interventions, and each is assigned a grade for 
level of evidentiary support. A discussion of hyperbaric 
oxygen, however, is not included in these guidelines.
	 The UHMS tasked its Research Committee to develop 

recommendations and advice for treating COVID-19 
with hyperbaric oxygen. This work is an outgrowth of 
that effort and a product of a research committee en-
hanced by additional members with special experience, 
knowledge, or interest. Some of this discussion has been 
previously posted on the UHMS website. Paganini et al. 
have also previously discussed the biological mechanisms 
of action of hyperbaric oxygen and identified potential 
logistic difficulties and toxicities of treatment [14].

Background and key aspects of COVID pathology 
and pathophysiology
SARS-CoV-2, which produces COVID-19 infection, is a 
single-stranded RNA-enveloped virus that causes severe 
respiratory disease in humans [15,16]. The most common 
symptoms include fever, cough, muscle aches, fatigue, 
and dyspnea. Non-pulmonary involvement can include 
cardiac, neurologic, and renal damage. Non-pulmonary 
symptoms may also include anosmia, ageusia, abdominal 
pain, nausea, and diarrhea. Abnormalities characteris-
tically seen on chest imaging of these patients include 
extensive lung opacities and bilateral infiltrates [17]. 
Numerous publications have now addressed the charac-
teristic findings for COVID lung pathology, which often 
result in ARDS (acute respiratory distress syndrome) 
[18]. An early paper from China reported diffuse alve-
olar damage (DAD), prominent alveolar edema, proin-
flammatory concentrates, fibrin deposition within pneu-
mocytes, and pulmonary microthrombi [19]. Li and Ma 
in June 2020 reported some key differences between 
COVID-associated ARDS and ARDS caused by other 
disorders. Notably, they reported the usual onset for 
COVID ARDS was eight to 12 days after diagnosis, while 
in other disorders, it characteristically occurs within 
seven days. They also reported that in COVID-induced 
ARDS, lung compliance is normal in some patients, 
which is uncharacteristic in ARDS from other etiologies 
[20]. An interesting publication by Hariri et al. challenges 
the concept that the ARDS seen with COVID-19 is patho-
logically novel and distinctly different from the ARDS 
that has been shown to occur with SARS (severe acute 
respiratory syndrome) or H1N1 virus (also known as 
swine flu) [21]. Their findings demonstrate that the 
pathologic findings of ARDS in COVID are not sub-
stantially different in frequency or severity from those 
resulting from other viruses, especially SARS, when 
DAD, acute fibrinous organizing pneumonia (AFOP), 
organizing fibrosis, superimposed pneumonia, and 
microthrombi are compared. A review by Bohn and 
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Table 1: Events leading to the overexuberant immune response in the viral host [15]

	 Sequences and effects of viral 	 Consequences of these effects
	 invasion and immune response	 and immune response

_________________________________________________________________________________________________________________________________

	 viral invasion at ACE2 receptor	 replication and release of virus
_________________________________________________________________________________________________________________________________

	 early phase immune response	 monocytes, macrophages, dendritic cells and
		  sensitized T-lymphocytes act to remove infected cells

_________________________________________________________________________________________________________________________________

	 vigorous invasion of active	 systematic overproduction and loss of regulation of
	 immune cells in the lung	 proinflammatory and inflammatory cytokines and
		  chemokines including NLRP-3, IL-1β, IL-6, IL-2, 
		  IP-10, GM-CSF, IFN-γ, TNFα, M1P1a

_________________________________________________________________________________________________________________________________

	 extrapulmonary involvement	 extrapulmonary organ involvement leads to activation 
		  of procoagulant response and multiorgan failure

_________________________________________________________________________________________________________________________________

colleagues of the pathophysiology of COVID infections 
provides a succinct overview of the pathophysiologic 
processes involved with disease consequences and 
progression [15].
	 The leading cause of death from COVID-19 is respir-
atory failure from ARDS. A much smaller number suc-
cumb to multiorgan failure (MOF) [15,23]. In vitro cell 
studies show a delayed release of cytokines in respiratory 
epithelial cells and macrophages in the early stages of 
infection [23-25]. Later, the cells secrete high levels of 
proinflammatory cytokines, including interleukin-1 
beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor 
(TNF), and chemokines CCL-2, CCL-3, and CCL-5 [26-
33]. Table 1 shows the sequence of events involved in 
the major aspects of COVID-19 pathophysiology.
	 A normal concern for any clinician considering hy-
perbaric oxygen for COVID-19 patients is the possibility 
of inducing or increasing pulmonary oxygen toxicity in 
these patients, some with severe pre-existing lung pathol-
ogy [34]. Most clinical measures of oxygen toxicity are 
non-specific (e.g., cough, chest pain, dyspnea, and chest 
tightness), and these symptoms are likely already present 
in many patients with COVID-19. Also, most hospitalized 
patients with COVID-19 are already receiving high levels 
of and prolonged exposure to normobaric oxygen, which 
can itself cause oxygen toxicity. Cases treated to date with 
HBO2 have not shown evidence of worsened pulmo-
nary status due to the sustained exposure to high oxygen 
levels either in the chamber or between treatments in the 
ICU or hospital bed. In fact, the consistently reported 

response to hyperbaric oxygen has been improved respi-
ration. The presentations by Drs. Thibodeaux, Lee and 
Gorenstein at a webinar sponsored by the UHMS on 
July 20, 2020 (https://www.uhms.org/covid-19-informa-
tion.html) were consistent in this observation. The au-
thors (Gorenstein and Thibodeaux) noted that if oxygen 
toxicity was enhanced by HBO2, the hyperbaric group 
would have demonstrated deterioration of their r
espiratory status and worsened outcomes. Both Drs. 
Gorenstein and Thibodeaux confirmed their impres-
sion that the hyperbaric-treated patients did not exhibit 
signs or symptoms of pulmonary oxygen toxicity [35]. 
The likely reality is that this patient population needs 
high-dose supplemental oxygen, and HBO2 therapy 
accomplishes this exceptionally well without a detectable 
increase in oxygen toxicity.

Extreme respiratory failure resulting in hypoxemia 
and tissue hypoxia
The hallmark of serious life-threatening COVID in-
fection is profound hypoxemia and secondary tissue 
hypoxia due to pneumonia, often bilateral and often 
leading to ARDS. Some patients with severe hypoxemia 
cannot be adequately oxygenated in spite of the admini-
stration of high fractions of oxygen along with mechan-
ical ventilation. A recent short report sheds additional 
light on our understanding of the pathophysiology of 
hypoxemia in COVID patients [36]. This study used 
intracranial Doppler to detect microbubbles produced by 
the venous injection of agitated saline in 18 mechanically 
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ventilated COVID-19 patients. The authors were able to 
detect bubbles in the cerebral circulation of 83% of these 
patients and proposed that the dilated pulmonary vas-
culature in COVID patients leads to shunting of blood 
through the pulmonary circulation and a failure to filter 
out these bubbles in the pulmonary capillaries. The 
same process causes ventilation perfusion (V/Q) 
mismatch and the failure to oxygenate blood returning 
to the heart, which leads to  systemic hypoxia unre-
sponsive to oxygen administration.
	 German researchers in a single institution made a 
retrospective review of 213 patients and reported that 
27% of their COVID admissions were given ventilator 
suport [37]. Of this group, 57% most likely died from 
refractory respiratory failure. A Chinese group reported 
that in a similar group of COVID-19 patients, a mortality 
rate of 50% was seen where patients died of respiratory 
failure despite mechanical ventilation. They discuss the 
role of extracorporeal membrane oxygenation (ECMO) 
as intervention for patients in whom ventilator support 
is inadequate [38].

Exaggerated immune response with resultant 
inflammatory response 
The upregulation of cytokine and chemokine responses 
in COVID-19 causes apoptosis of endothelial cells that 
damages the pulmonary microvascular and alveolar epi-
thelial cell barriers. In turn, vascular leakage and alveo-
lar edema result, eventually followed by hypoxemia and 
a cytokine storm [39-41]. Much of this early reaction is 
precipitated by the activity of monocytes, macrophages 
and sensitized T lymphocytes. Cytokine storm, defined 
as an excessive immune response to an external trig-
gering event, follows and is thought to be one of the 
major contributors to the development of ARDS and 
MOF. COVID-19 activation of transcription factor  
NF-kappa beta (NF-κB) in macrophages of the lung, 
liver, kidney, central nervous system, gastrointestinal 
system, and cardiovascular system, plays a major role in 
this process. This activation of NF-κB in turn leads to 
the production of IL-1, IL-2, IL-6, IL-12, tumor necrosis 
factor alpha (TNF-α), lymphotoxin-alpha (LT-α), lym-
photoxin-beta (LT-β), granulocyte-macrophage colony-
stimulating factor (GM-CSF), and other chemokines 
[29]. The rapid increase in cytokines and chemokines 
attracts large numbers of neutrophils and monocytes, 
which results in excessive inflammatory infiltration 
and resultant lung injury. In patients with COVID-19 
there are high levels of expression of IL-1β, interferon 

(IFN), and TNF-α, as well as IL-2R (IL-2 receptors) 
and IL-6, which positively correlate with disease severity 
and mortality [31,32]. These cytokines are known to be 
mediators of the inflammatory response. See Table 1  
for a simplified depiction of sequence and involve-
ment of the prominently involved cytokines.

Hypercoagulability
Since the very first cases in the COVID-19 pandemic, 
hypercoagulability has been recognized as one of the 
hallmarks of its clinical presentation and consequences 
[43,44]. It has been a significant cause of death in pa-
tients with severe disease [45]. This hypercoagulable 
state can lead to deep vein thrombosis (DVT), pulmon-
ary embolism, myocardial infarction, and strokes [46]. 
It is also frequently associated with disseminated in-
travascular coagulation (DIC), though the characteris-
tic multifocal bleeding that results after the consump-
tion of coagulation factors and platelets typical of DIC 
has not yet been described in COVID patients [47]. 
The presence of widespread thrombosis and microangi-
opathy in pulmonary vessels and microthrombi in 
alveolar capillaries was a consistent finding in a post-
mortem study of deceased COVID-19 patients [48]. This 
effect most definitely contributes significantly to the
respiratory failure pathognomonic of COVID-19.
	 A retrospective analysis of 99 patients from Chi-
na demonstrated several abnormalities in coagulation 
studies [49]. Thirty-six percent of patients had elevated 
D-dimer levels; 16% showed a reduced activated partial 
thromboplastin time (APTT); 6% had an increased 
APTT; 30% had a shortened prothrombin time (PT), 
while 30% had an extended PT. In contrast, Levi et al. 
report that the typical findings are a mildly prolonged 
PT, a rare decrease in platelet count and fibrinogen 
levels at the upper limits of normal [50]. In both 
reports, higher D-dimer levels were associated with an 
increased mortality rate [49,50]. 
	 A commentary by Connors and Levy discusses throm-
boinflammation, the interaction between inflammation 
and coagulation [51] The inflammatory reaction char-
acterizing the hyperactive immune response of the host 
patient appears to be the primary source of the hyper-
coagulative state and is mediated by cytokines, notably 
IL-6. Mukund and associates have observed that the 
microvascular events, including activation of the co-
agulation cascade, are in part driven by complement 
activation [52]. They also state that plasmin is a crucial 
mediator that serves to “prime” interactions between 
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complement and the platelet-activating systems that 
involve the pulmonary epithelium. They suggest that 
recognition of this interaction may offer opportun-
ities for therapeutic intervention.

Oxygen debt
The concept of oxygen debt originates from studies in 
exercise physiology and can be traced back to a classic 
work by Hill and Lupton in 1923 [53]. Oxygen debt can 
be thought of as the minimum requirement for tissues 
to maintain aerobic metabolism minus the oxygen sup-
ply available. This oxygen debt continues to accumulate 
as long as the inadequacy of supply exists. It is typically 
expressed in liters of oxygen undersupplied per meters 
squared of body surface area. When oxygen is inadequate 
to supply the baseline metabolic requirements of tissue, 
a progressive and cumulative oxygen debt is established.
	 Oxygen debt has been described in hemorrhagic 
shock, severe anemia, septic shock, and birth asphyxia 
[54-56]. One publication from Wuhan, China, discusses 
the importance of providing adequate oxygen to COVID 
patients to avoid the accumulation of oxygen debt [57]. 
There are not large numbers of publications defining 
and providing guidance for the management of oxygen 
debt. However, the essential elements for its occurrence 
exists – i.e., hypoxemia of significant severity and per-
sistence to require that body tissues adopt anaerobic 
pathways of glycolysis with resultant production of 
lactic acid.
	 Body tissues and organs extract on average 5 to 6 mL 
of oxygen for every 100 mL of blood flow to support 
their metabolic needs [58]. Some tissues, including the 
heart, brain and retina, have even higher oxygen re-
quirements. In anemic patients, especially those who 
become anemic suddenly by virtue of a bleed, reduc-
tions of hemoglobin to 6 gm/dL are a usual threshold 
for critical oxygen debt, and drops in hemoglobin 
below 3.6 gm/dL are certainly inadequate [58]. 
	 Van Meter states that survival is not possible if the 
oxygen debt exceeds 33 L/m2. MOF occurs at a debt of 
22L/m2, whereas those whose debt is no more than 
9L/m2 typically survive without residual organ dysfunc-
tion or injury [58].
	 Byproducts of this process requiring anaerobic met-
abolism include lactic acid [59]. Van Hall et al. discuss 
an increased need for oxygen to clear the excess accu-
mulated lactate. This imposes a need for additional 
oxygen following successful restoration of adequate 
levels of oxyhemoglobin. In a review article from 2005 

Rixen and Siegel discussed the importance of oxygen 
debt in determining the severity of hemorrhage and 
post-traumatic shock. They state that oxygen debt may 
be a more important determinant of the severity of hem-
orrhagic shock than estimates of blood loss, volume 
replacement, blood pressure or heart rate [60].
	 A prominent feature of COVID-19 is hypoxia second-
ary to respiratory failure. There are reports in the liter-
ature demonstrating COVID-19 patients with severe 
arterial  hypoxemia with no signs or symptoms of 
respiratory distress or dyspnea. Guan has reported 
dyspnea in only 18.7% of 1,099 hospitalized COVID-
19 patients, despite low PaO2/FiO2 (ratio of arterial 
oxygen tension to fractional inspired oxygen). Eighty-
six percent of these patients had abnormal CT scans, 
and 41% of these patients required supplemental 
oxygen [60]. This phenomenon has been termed silent 
or happy hypoxia in the literature [61]. The under-
standing of the physiology of silent hypoxia continues 
to evolve in the literature of critical care and respiratory 
medicine. New mechanisms for this disconnect be-
tween objectively measured hypoxemia and subjective 
perception of breathlessness continue to be discussed. 
One such mechanism is the presence of a right-to-left 
intrapulmonary shunt that induces hypoxia [62]. A 
shift in the oxygen dissociation curve is another factor 
that may contribute to silent hypoxia. Fever, prominent 
with COVID-19, causes the curve to shift to the right; 
any given PaO2 will be associated with a lower oxygen 
saturation of arterial blood (SaO2) [63]. Additionally, 
the development of microthrombi in the pulmonary 
vasculature may contribute to this phenomenon [64]. 
From this silent hypoxia, an oxygen debt can be created 
due to the prolonged period of hypoxemia. The ability 
to reverse oxygen debt is an important effect of 
HBO2 therapy that has been demonstrated in severe 
anemia. Although the use of HBO2 for oxygen debt 
associated with severe anemia likely differs from 
COVID-19, further research should be carried out 
to analyze whether repayment of oxygen debt is a key 
mechanism for HBO2 on COVID-19.
	 Elevated blood lactate likely indicates inadequate 
oxygenation for which short periods of normal or even 
hyperoxygenation may be beneficial. On the other hand, 
tissue hypoxia is an uncommon cause of elevated blood 
lactate levels (a potential marker of oxygen debt) in 
sepsis, particularly after adequate initial resuscitation 
[66,67]. Other sepsis-related reasons for elevated lac-
tate include impaired oxygen use due to mitochondrial 
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dysfunction, which would not be ameliorated by an in-
crease in oxygen delivery [68] and stress-related increase 
in glucose metabolism and impaired lactate clearance 
[66-68], which is not likely to respond to hyperbaric hy-
peroxemia. Further studies are needed to assess whether 
the payment of oxygen debt is a key issue and potential 
target for therapy in the treatment of COVID-19.

Favorable mechanisms offered by hyperbaric oxygen 
for COVID patients
The acute restoration of adequate oxygen blood 
and tissue levels
Hyperbaric oxygen is frequently employed in circum-
stances where hypoxemia or critical organ hypoxia is 
encountered [1]. These circumstances include severe 
anemia, air embolism, decompression sickness and 
carbon monoxide poisoning.
	 A physiologic advantage of hyperbaric oxygen is en-
hanced delivery of O2 not only attached to hemoglobin 
but also dissolved in plasma. Boerema, an early practi-
tioner of clinical hyperbaric oxygen, demonstrated in an 
animal model employing piglets that dissolved oxygen 
in plasma was adequate to support life even when the 
animals were exsanguinated [69]. In COVID-19 patients 
the primary cause of hypoxemia is the failure to deliv-
er adequate oxygen across a diseased respiratory mem-
brane. If oxygen successfully crosses over the alveolo-
capillary membrane, the usual function of hemoglobin 
oxygen transport should dominate as long as the patient 
has no defects in hemoglobin amount or function. In 
two cases where co-author DD measured transcutaneous 
levels at pressure, their levels exceeded those that would 
result from 100% saturation of a normal hemoglobin 
(see the discussion just below) [6].
	 Weaver [11] has demonstrated the success of transcu-
taneous monitoring as a surrogate for invasive arterial 
blood gas sampling. Weaver and colleagues studied pa-
tients receiving hyperbaric oxygen who demonstrated 
a variety of lung pathologies. This study showed that 
this group of patients could be adequately oxygenated 
with hyperbaric oxygen, albeit achieving PaO2 levels
lower than patients with normal lung function [70].
	 Dooley and colleagues established reference values 
for transcutaneous measurements of oxygen tensions in 
normal subjects at ground level and at hyperbaric pres-
sures [71]. In this study, an electrode was placed on the 
anterior chest wall 5 centimeters below the clavicle at 
the mid-clavicular line. On unenhanced ground-level air 
this value averaged 67±12mmHg. On 100% oxygen at 

1.0 ATA (atmospheres absolute), this value averaged 
450±54 mmHg. At 2.4 ATA, the value averaged 1,312±
112 mmHg. A co-author (DD) of this paper [6] treat-
ed a small series of patients early in the pandemic 
and reported excellent response. When she employed 
transcutaneous monitoring in two patients, she re-
corded values of 516mmHg and 456mmHg during 
treatments at 2.0 ATA. These transcutaneous values 
compare favorably to the ground-level measures by 
Dooley in normal subjects breathing air and would
obviously support normal aerobic metabolism [71].

Reduction of inflammation induced by the 
exaggerated immune response to COVID
HBO2 therapy in the treatment of patients is likely to 
attenuate the production of proinflammatory and in-
flammatory cytokines which are generated in response 
to the COVID infection (Table 2). The reduction of in-
flammatory stimuli by HBO2 has been demonstrated 
after exercise, radiation, and surgery [72-74]. Studies 
have demonstrated that HBO2 inhibits TNF-α produc-
tion during intestinal ischemic reperfusion [75]. In 
indomethacin-induced enteropathy hyperbaric oxygen 
has been shown to decrease the production of both 
TNF-α and IL-1β [76]. A randomized pilot study found 
that a single preoperative HBO2 session the day before 
pancreatic surgery modulated the inflammatory response 
for cytokines IL-6 and IL-10 and showed a decrease in 
postoperative pneumonia [77]. Caution should be taken, 
however, in equating the impact of HBO2 in preventing 
inflammation with the impact of hyperbaric oxygen in
reducing already-established inflammatory conditions. 
	 Bosco and colleagues have demonstrated a persistent 
reduction in TNF-α and IL-6 and reduced inflammation 
in patients with avascular necrosis of the hip after 
receiving hyperbaric oxygen [78]. In an animal model 
of traumatic brain injury, Qian and associates reported 
reductions in IL-1β and the inflammasome NLRP-3 
after HBO2 therapy [79]. 
	 Evidence that hyperbaric oxygen may be useful in 
acute inflammation also comes from studies of acute 
pancreatitis, sepsis, and inflammatory bowel disease 
(not currently approved indications for HBO2 treatment 
by the UHMS) [80-82]. In acute pancreatitis, animal 
studies show HBO2 therapy reduces inflammation and 
improves outcomes. Similarly, HBO2 improved sepsis 
outcomes in mice, perhaps by a modulation of IL-10 
[83]. In a randomized trial of HBO2 in patients with 
moderately severe ulcerative colitis, which like COVID-
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Table 2: Likely beneficial impact of hyperbaric oxygen on COVID-19 pathogenesis [15]

	 Pathologic target 	 Specific hyperbaric effect
_________________________________________________________________________________________________________________________________

	 severe hypoxemia and tissue hypoxia	 proven success in restoring or exceeding normoxic
		  status of oxyhemoglobin and tissue oxygenation

_________________________________________________________________________________________________________________________________

	 overexuberant and harmful immune response	 specific anti-inflammatory effects of hyperbaric
	 causing inflammation	 oxygen on inflammasomes, proinflammatory and 
		  inflammatory cytokines and chemokines

_________________________________________________________________________________________________________________________________

	 hypercoagulation	 demonstrated but not yet repeated reduction
		  in D-dimers

_________________________________________________________________________________________________________________________________

	 oxygen debt	 likely restoration of anaerobic metabolism in
		  chronically hypoxic tissues and promotion of 
		  lactate clearance

_________________________________________________________________________________________________________________________________

	 impact on mesenchymal and possible	 likely additional anti-inflammatory effects
	 hematopoietic stem cells	  

_________________________________________________________________________________________________________________________________

19 is characterized by uncontrolled inflammation, HBO2 
seemed to improve outcomes [84]. Overall, the data 
suggest HBO2 can reduce inflammation arising from 
several pathologic states.

Amelioration of hypercoagulopathy
In the clinical series of COVID patients receiving HBO2 
reported to date there is no definitive indication that 
hyperbaric oxygen interrupts or diminishes the hyper-
coagulable state of advanced stage SARS-CoV-2 infec-
tions. One case from the Thibodeaux, et al. series had 
a significant diminution in D-dimer level  [4]. In the 
webinar sponsored by the UHMS and broadcast on 
June 20, 2020, Dr. Thibodeaux presented a larger group 
of 12 patients who had consistent decreases in D-dimer. 
Of note, these patients were also routinely treated 
with heparin drips. On the other hand, Denham did not 
observe a decrease in D-dimer in her series of patients 
cited previously [6].

Repayment of oxygen debt
No study has investigated hyperbaric oxygen’s impact 
on “repayment” of an incurred oxygen debt as the result 
of COVID infection. Only a single paper was found by 
electronic search addressing the likelihood of oxygen 
debt in COVID-19 patients [57]. The prolonged and pro-
found hypoxemia that some COVID patients experience 
would be expected to produce an oxygen debt by virtue 

of this hypoxemia. We must depend on indirect evidence 
to postulate a positive result by hyperbaric oxygen in the 
repayment of oxygen debt in COVID patients. Van Meter 
in several publications discusses the role of hyperbaric 
oxygen in addressing oxygen debt in patients with pro-
found anemia [57,85,86]. Johnson-Arbor and Cooper also 
address the application of hyperbaric oxygen to treat 
severe anemia and its beneficial effect including reduc-
ing oxygen debt [87]. Greensmith has reported two cas-
es of severe blood loss anemia where patients were not 
able to receive immediate transfusion [88]. One refused 
transfusion because of religious beliefs, and the second 
had difficulties with cross-matching because of the pres-
ence of an anti-c erythrocyte antibody. The first patient 
had an electrocardiogram on admission that showed 
ischemic changes that resolved during the first treat-
ment and resolved permanently along with a normal 
troponin I level four days after admission. The second 
patient had a tonic-clonic seizure while waiting for her 
hyperbaric oxygen treatment to begin and remained un-
responsive in the post-ictal phase. She received a single 
hyperbaric treatment with resolution of her neurologic 
deficits and was then able to be transfused. The first 
patient initially had a hemoglobin of 5.3 g/dL; the sec-
ond had a hemoglobin on initial draw of 2.6 g/dL and 
had a lactate level of 7.4 MEq/L (normal range 0.5 to 
2.2 mEq/L). It was the author’s opinion that organ dys-
function (cardiac in Patient 1 and central nervous system 
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in Patient 2) was reversed by the hyperbaric oxygen in-
tervention. These cases may not represent a true picture 
of oxygen debt since their hypoxemia was more acute 
than chronic. Additional study in the role of hyperbaric 
oxygen in eliminating oxygen debt should be pursued.

Mobilization of stem cells and impact 
on mesenchymal stem cells
Hyperbaric oxygen increases the mobilization of hemato-
poietic stem cells [89]. Schwarting et al. have given us the 
only report that suggests hematopoietic stem cells can re-
duce inflammation [90]. There is little literature address-
ing the effect of hyperbaric oxygen on mesenchymal stem 
cells (MSC). A single article by Shyu et al. shows that hy-
perbaric oxygen specifically increases mesenchymal stem 
cells in a preclinical model employing human cells in cul-
ture [91]. MSCs have strong anti-inflammatory and im-
mune regulatory functions [92]. Mesenchymal stem cells 
can inhibit the abnormal activation of T lymphocytes 
and macrophages and induce their differentiation into 
regulatory T cell subsets and anti-inflammatory mac-
rophages [93]. They are known to inhibit the secretion 
of proinflammatory cytokines such as IL-1, TNF-α, IL-
6, IL-12, and IFN-γ, thereby reducing the occurrence of 
cytokine storms [93]. No clinical evidence exists at this 
time  showing that mesenchymal stem cells are induced 
by hyperbaric oxygen and successfully inhibit the pro-
inflammatory cytokines mentioned above for COVID-19 
patients.

SUMMARY OF POTENTIAL MECHANISMS 
UNDERLYING COVID-19 PATIENT RESPONSES 
TO HYPERBARIC OXYGEN
Patients with COVID-19 experience acute hypoxia, a 
profound inflammatory response, hypercoagulability, 
and can incur an oxygen debt. Hyperbaric oxygen likely 
exerts a beneficial influence on all these problems. One 
publication suggests that hyperbaric oxygen may in-
crease mesenchymal stem cell activity, which could have 
a beneficial impact on regulating inflammation.
	 A prominent feature of COVID-19 is hypoxia due to 
lung dysfunction. These patients are subject to severe 
hypoxemia and resultant tissue hypoxia. Hyperbaric oxy-
gen is known to efficiently deliver oxygen to severely 
hypoxic patients. Hyperbaric oxygen has been largely 
successful in the three published series and several cited 
anecdotal unpublished reports in treating hypoxemia 
of severely affected COVID-19 patients. Reports de-

monstrate that these COVID patients frequently main-
tain their improved oxygen status for hours after the 
hyperbaric exposure. Interestingly, in those series 
completed to date a single daily hyperbaric exposure 
for as few as five treatments appears to be effective.
	 Those patients who become ventilator-dependent due 
to COVID-19 had earlier been reported to succumb to 
their disease in various series at rates of 50-80%. Al-
though survival has recently improved significantly as 
the use of supplemental oxygen and ventilatory support 
have been refined, mortality rates are still in the mid- 30% 
range for intubated patients [95,96]. Fewer patients treat-
ed with hyperbaric oxygen have progressed to intuba-
tion, and fewer have died (Gorenstein and Thibodeaux).
	 The overexuberant immune response generated by 
COVID causes significant inflammatory and proinflam-
matory reactions, causing damage not only to the lung, 
but to the kidney, gastrointestinal tract, and other 
organ systems. 
	 Anticoagulation is essential for those who develop 
hypercoagulability. A single report suggests that hyper-
baric oxygen can reduce hypercoagulation, but this find-
ing has not been corroborated.
	 Benefits predicted by our discussion of hyperbaric 
oxygen mechanisms, some of which are supported by 
only pre-clinical studies, include relief of hypoxia, 
possible repayment of any accrued oxygen debt, reduced 
inflammation, and a possible improvement in hyper-
coagulation. Based on our discussion of mechanisms 
described above, we encourage the development and 
conduct of well-designed clinical trials investigating 
hyperbaric oxygen as part of a multimodality treat-
ment of COVID-19 patients. As experience in treating 
COVID patients has increased, it has become evident 
that a subpopulation of patients who survive the acute 
infection may experience persistent symptoms for weeks 
and even months. Indeed, some of these patients will 
experience permanent sequelae [97]. Future efforts will 
have to be directed to these long-term consequences 
and depending on the ultimately demonstrated causes 
of these sequelae, some of the beneficial effects of
hyperbaric oxygen may merit study here as well.
	 	 	 	 	 	 	 n
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