Hyperbaric Oxygen and COVID-19

Clinical trials registered on clinicaltrials.gov
1. Hyperbaric Oxygen (HBO₂) Therapy as a Treatment for COVID-19 Infection
(Not yet recruiting) • HBO₂ protocol not given

Sponsor: Ochsner Health System, New Orleans, Louisiana (NCT number): NCT04343183

Information provided by (Responsible Party)/PI: John Engle, Ochsner Health System

STUDY DESCRIPTION

Brief Summary: Patients who meet inclusion criteria will be randomized into treatment versus control group. Treatment groups will undergo hyperbaric oxygen (HBO₂) therapy (protocol not described) and compared to the control group.

Detailed Description: After enrollment, patients will be randomized into treatment versus control group. Both populations will receive the same inpatient medical treatment. All patients in the treatment group will undergo hyperbaric oxygen therapy under the same treatment protocol. After completion of the treatment protocol, specific study endpoints will be compared between the treatment and control groups.

STUDY DESIGN

Study type interventional (clinical trial)
Estimated enrollment 48 participants
Allocation randomized
Intervention model parallel assignment
Intervention model description This study will utilize a single-center sequential two-parallel-group (HBO₂/standard care) randomized controlled design with two looks to allow for early stop due to clear benefit/harm.

Masking single (outcomes assessor)
Masking description The biostatistician and radiologist will be blinded.

Estimated study start date April 2020
Estimated study completion date June 2020

OUTCOME MEASURES

Primary Outcome Measures
1. Decrease incidence of intubation by 30% or greater (time frame: one month);
 Compare rates of intubation between treatment and control groups

Secondary Outcome Measures
1. decrease renal injury (time frame: one month);
 measure glomerular filtration rate (GFR) and compare between treatment and control groups

ELIGIBILITY / INCLUSION CRITERIA

1. adult inpatients >18 years old (all sexes)
2. positive PCR COVID-19 testing
3. CT evidence of interstitial lung opacity
4. oxygen saturation <90% on room air
5. pO₂ = 55-70

EXCLUSION CRITERIA

1. increased oxygen requirements
2. hemodynamic instability (MAP<65)
3. bradycardia (HR <50)
4. history of seizure disorder
5. pneumothorax
6. GFR <30
7. hemodialysis
8. refractory anxiety/claustraphobia
9. current pregnancy
10. Uncorrectable hypoglycemia

CONTACTS

• John F. Engle, MD • +985-768-8918 • englemdf94@gmail.com
• Michael D. Lindley, MD • +504-957-3326 • mdlindley@gmail.com
2. Hyperbaric Oxygen for COVID-19 Patients: NCT0433208 (Closed/Completed)
HBO₂ protocol as below • HBO₂ 2.0 ATA 1-5 treatments

Sponsors and Collaborators: NYU Langone Health; NYU Winthrop Hospital
Information provided by (Responsible Party): NYU Langone Health

STUDY DESCRIPTION

Brief Summary: Hyperbaric oxygen (HBO₂) therapy treatment will be provided to patients as an adjunct to standard therapy for a cohort of 40 COVID19-positive patients with respiratory distress at NYU Winthrop Hospital. All patients prior to the clinical application of HBO₂ will be evaluated by the primary care team and hyperbaric physician. After the intervention portion of this study a chart review will be performed to compare the outcomes of intervention patients versus patients who received standard of care.

Detailed Description: This is a single-center prospective pilot cohort study to evaluate the safety and efficacy of hyperbaric oxygen (HBO₂) therapy as an emergency investigational device for treating patients with a novel coronavirus disease, COVID-19. Patients who meet inclusion criteria will be consented by the hyperbaric physician. They will then be transported from the ED or other unit to the hyperbaric unit while maintaining airborne precautions based on the most current hospital protocol. All study personnel will have proper PPE at all times. The patient will then be placed into the monoplace chamber and when the chamber door is closed the patient will remove any respiratory filter/mask that was placed. The patient will receive 90 minutes of hyperbaric oxygen at 2.0 ATA with or without air breaks per the hyperbaric physician. Upon completion of the treatment the patient will then return to the medical unit and continue all standard of care. Additional treatments (up to 5) can be given if warranted and agreed upon by the patient and all members of the team caring for the patient. After the intervention portion of this study a chart review will be performed to compare the outcomes of intervention patients versus patients who received standard of care.

STUDY DESIGN • OUTCOME MEASURES

Primary Outcome Measures
1. mortality (time frame: duration of hospitalization: 5-7 days on average)

Secondary Outcome Measures
1. days on invasive mechanical ventilation (time frame: duration of hospitalization: 5-7 days on average)

ELIGIBILITY / INCLUSION CRITERIA
In order to be eligible to participate in this study an individual must meet all of the following criteria:
1. male or female, age >18 years
2. positive COVID-19 test
3. respiratory compromise defined by SpO₂ <93%
4. ability to sign informed consent

EXCLUSION CRITERIA
An individual who meets any of the following criteria will be excluded from participation in this study:
1. pregnancy
2. untreated pneumothorax

CONTACTS
• Scott Gorenstein • +516-663-8498 • Scott.Gorenstein@nyulangone.org
• David Lee • +212-562-6561 • David.Lee@nyulangone.org
3. Management by Hyperbaric Oxygen Therapy of Patients with Hypoxemic Pneumonia With COVID-19: NCT04344431 (Recruiting)

Sponsor: Direction Centrale du Service de Santé des Armées

STUDY DESCRIPTION

Brief Summary: Several patients with hypoxemic SARS-CoV-2 pneumonia were able to benefit from hyperbaric oxygen (HBO₂) treatment in China. In a clinical case published in the *Chinese Journal of Hyperbaric Medicine*, treatment with repeated HBO₂ sessions prevented admission to intensive care unit with mechanical ventilation in a patient aged 69 who presented with signs of respiratory decompensation. HBO₂ can dramatically increase the amount of dissolved oxygen in the blood. HBO₂ not only promotes blood transport but also its tissue delivery. Furthermore, HBO₂ has specific immunomodulatory properties, both humoral and cellular, making it possible, for example, to reduce the intensity of the inflammatory response and to stimulate antioxidant defenses by repeating sessions. A virucidal capacity of HBO₂ therapy might also be involved.

Detailed Description: The main objective of this study is to assess the effectiveness of HBO₂ in addition to normal management over the period of normalization of the oxygen requirement (oxygen dependence) in patients with SAR-CoV-2 pneumonia not requiring invasive or non-invasive ventilation. It is a prospective, interventional, multicenter, controlled, randomized study. Patients admitted for SARS-CoV2 pneumonia in the COVID sector of the hospital who have oxygen-dependence criteria will be proposed for inclusion in accordance with the inclusion and non-inclusion criteria. Randomization will be carried out to determine the allocation in two groups: an HBO₂ group which will perform a daily session after checking for the absence of contraindication to HBO₂ and a non-HBO₂ control group with the same clinical criteria, but who will not benefit from HBO₂ sessions. In both groups standard continuous treatment with normobaric oxygen will be maintained.

STUDY DESIGN

Estimated enrollment 100 participants

Allocation randomized

Intervention model parallel assignment

Masking single (outcomes assessor)

Primary purpose Treatment

Actual study start date April 14, 2020

Estimated primary completion date April 2021

Estimated study completion date May 2021

OUTCOME MEASURES

Primary Outcome Measures

1. time to normalize the oxygen requirement (oxygen-dependence), i.e., allowing a pulse oximetry value in ambient air greater than or equal to 92% and / or arterial blood gas with a PaO₂ value greater than 60mmHg in ambient air

Secondary Outcome Measures

1. days of hospitalization between the HBO₂ group and the control group
2. number of days with oxygen need, taking into account the predictors of bad outcome
3. oxygen flow values to obtain a saturation by pulse oximetry greater than or equal to 92% values between the HBO₂ group and the control group
4. oxygen flow values to obtain a saturation by pulse oximetry greater than or equal to 92% between the HBO₂ group and the control group
5. days on invasive mechanical ventilation
6. mortality
ELIGIBILITY / INCLUSION CRITERIA
1. male or female, age ≥18 years
2. patient with oxygen dependence criterion: need to maintain an oxygen flow rate less than or equal to 6 liters / minute to obtain saturation by pulse oximetry (SpO₂) greater than or equal to 92% or arterial gas with value PaO₂ greater than 60mmHg
3. diagnostic confirmation of COVID-19 pneumonia

EXCLUSION CRITERIA
1. minor subject (age <18 years)
2. person unable to give consent
3. pregnancy
4. participating in another research
5. signs of respiratory decompensation requiring mechanical ventilation
6. diagnosis of pneumonia with SARS-CoV-2 not confirmed
7. oxygen dependence criterion exceeded, i.e., need to maintain an oxygen flow rate greater than or equal to 6 liters / minute to obtain saturation by pulse oximetry (SpO₂) greater than or equal to 92% or arterial gas with value of PaO₂ greater than 60mmHg
8. inability to maintain the prolonged sitting position (at least 2 hours)
9. subject with contraindications to HBO₂ therapy

CONTACT
• Jean-Eric Blatteau, MD, PhD • +483162189 ext +33 • Sainte Anne Military Teaching Hospital, Toulon, France
• jeaneric.blatteau@intradef.gov.fr
4. Safety and Efficacy of Hyperbaric Oxygen for ARDS in Patients with COVID-19

HBO₂ protocol 2.4 bar (2.4 ATA), 30 minutes (excluding compression/recompression-maximum 5 treatments over 7 days

Karolinska University Hospital
Collaborators: Karolinska Institutet; University of California San Diego; Blekinge County Council Hospital

STUDY DESCRIPTION

Brief Summary: Mortality rates in patients who develop ARDS is extremely high, 61.5-90%, almost double the mortality of ARDS of any cause. ARDS associated with COVID-19 is associated with pulmonary edema, rapidly progressing respiratory failure and fibrosis. The mechanism behind the rapid progress is still an enigma, but theories have evolved around severe inflammatory involvement with a cytokine storm. HBO₂ significantly reduces inflammatory cytokines and edema.

Detailed Description: Mortality rates have been reported as high as 90% in patients developing ARDS in early reports and more recent reports have reported overall 28-day mortality rates of 61.5% in ICU patients with acute respiratory illness. ARDS associated with COVID-19 differs from other ARDS, with rapidly progressing respiratory failure and fibrosis. Macrophage activation is involved early and cytokine modulators such as interleukin-6 (IL-6) inhibitors have been tried in experimental settings but no proper clinical trials have proven positive outcome. Hyperbaric oxygen (HBO₂) significantly reduces inflammatory cytokines including IL-1β, IL-6 and TNF-α through several transcription factors regulating inflammation, including hypoxia inducible factor 1 (HIF-1), Nrf2 and NFkB.

STUDY DESIGN

Study type: interventional (clinical trial)
Estimated enrollment: 200 participants
Allocation: randomized
Intervention model: parallel assignment
Intervention model description: randomized controlled, open label, multicenter
Masking: none (open-label)
Primary purpose: treatment
Estimated study start date: April 25, 2020
Estimated primary completion date: October 31, 2021
Estimated study completion date: December 31, 2022

PRIMARY OUTCOME MEASURES

1. PO₂/FiO₂ (safety) oxygen requirement (arterial blood gas (pO₂))
2. fraction of inspired oxygen within 1 hour before and after HBO₂ and 6 hours after each HBO₂ treatment.
3. oxygen requirement (arterial blood gas (pO₂) and recorded fraction of inspired oxygen) At baseline, daily for 7 days, Day 14 and Day 30 (or last day in hospital if patient is discharged earlier or at withdrawal) irrespective of HBO₂ treatments.
4. national early warning score mean NEWS at baseline, within 1 hour before and after and 6 hours after HBO₂, daily for 7 days, Day 14 and Day 30 (or last day in hospital if patient is discharged earlier, or at withdrawal) irrespective of HBO₂ treatments.
5. immunological response: Measurement baseline, daily for 7 days, Day 14, Day 30 (or last day in ICU if patient has left ICU earlier, or at withdrawal)
 a. complete blood cell count including WBC count + differential
 b. C-reactive protein
 c. procalcitonin
 d. cytokines including but not limited to IL-6
6. mechanical ventilation: days free of invasive mechanical ventilation
SECONDARY OUTCOME MEASURES
1. adverse events, including SAE – serious adverse events
2. serious ADR – serious adverse drug reaction
3. oxygen dose: Mean oxygen dose calculated as oxygen tolerance units (OTU)
4. imaging, including pulmonary CT (low-dose CT), chest X-ray and chest ultrasound
5. secondary infections
6. mortality
7. ICU-free days
8. ICU mortality: Mortality for any cause in ICU (% of patients admitted to ICU)
9. hospital mortality: Mortality of any cause in Hospital
10. micro RNA plasma (biomarker-change in expression of micro RNA in plasma (qPCR) and micro RNA/RNA PBMC baseline, Day 3, Day 5, Day 7, Day 14, Day 30. First 20 patients.
11. immunological response: Baseline, Day 3, Day 5, Day 7. In first 20 patients Cytokines extended, including (IL-1β, IL-2, IL-6, IL33 and TNFα). Lymphocyte profile flow cytometry with identification of monocyte/lymphocyte subsets including but not limited to CD3+/CD4+/CD8+ monocyte proliferation markers
12. viral load (quantitative PCR) (Baseline, Day 7, Day 14, Day 30)

OTHER OUTCOME MEASURES
1. staff safety – serious and all adverse events in staff associated with treatment of COVID patients
2. HBO2 feasibility
 a. number of HBO2 treatments given/planned first 10 days
 b. received HBO2 treatment within 24 hours of enrolment (Yes/No)

ELIGIBILITY / INCLUSION CRITERIA
1. age 18-90 years, both genders
2. patient meets ARDS criteria (Berlin definition) and needs intubation, ventilator-assisted or ECMO-assisted treatment within 7 days of admission to hospital
3. suspected or verified COVID-19 infection
4. at least one risk factor for increased mortality in COVID-19: currently published, e.g., smoking, hypertension, diabetes, cardiovascular disease
5. documented informed consent according to ICH-GCP and national regulations

EXCLUSION CRITERIA
1. ARDS with etiology other than COVID
2. known pregnancy or positive pregnancy test in women
3. patients with previous lung fibrosis
4. CT- or spirometry-verified severe COPD with emphysema
5. contraindication for HBO2 according to local guidelines
6. do not resuscitate (DNR) or other restrictions in escalation of level of care

CONTACTS
• Anders Kjellberg, MD • +46812375212 • anders.kjellberg@ki.se
• Peter Lindholm, MD, PhD • peter.lindholm@ki.se
5. Hyperbaric Oxygen Therapy Effect in COVID-19 RCT (HBOTCOVID19)
NCT04358926 (Not yet recruiting)
HBO₂ protocol not specified; 8 sessions of HBO₂ vs. 8 sessions of normobaric O₂ in chamber over 4 days
Sponsor: Assaf-Harofeh Medical Center
Information provided by (Responsible Party): Assaf-Harofeh Medical Center

STUDY DESCRIPTION
The 2019-20 coronavirus disease caused by COVID-19 is an ongoing pandemic. So far no specific treatment has proven efficacy. Recent case series reported the use of hyperbaric oxygen (HBO₂) therapy on 5 severe COVID-19 patients who developed respiratory insufficiency. HBO₂ mechanisms of tissue oxygenation and anti-inflammatory effect may explain these findings. The purpose of the current study is the evaluate the efficacy of HBO₂ therapy in moderate-severe COVID-19 patients in a randomized controlled manner.

STUDY DESIGN
Study type: interventional (clinical trial)
Estimated enrollment: 30 participants
Allocation: randomized
Intervention model: parallel assignment
Intervention model description: randomized controlled, double-blinded
Masking: double (participant, outcomes assessor)

OUTCOME MEASURES
Primary Outcome Measures
1. PaO₂/FiO₂: 1 day and 7 days after the last intervention session. Oxygenation index of the lungs calculated. PaO₂ measured in the blood divided by the inhaled FiO₂.
2. SpO₂: One hour prior to and after every intervention session, 1 day and 7 days after the last intervention session. Oxygen saturation measured in %.
3. NEWS Score: One hour prior to and after every intervention session, 1 day and 7 days after the last intervention session national early warning score (NEWS) calculated by the patient's vitals and condition.
4. Inflammation level: 1 day and 7 days after the last intervention session including white blood cell count, CRP level, ESR and cytokines: IL-1, IL-2, IL-6, IL-10, TNF-α, procalcitonin, ferritin.

Secondary Outcome Measures
1. Symptoms level: 1 day and 7 days after the last intervention session. Patient's reported symptoms including cough, dyspnea, etc.
2. Average oxygen supply per day: 1 day and 7 days after the last intervention. Oxygen amount supplied measured in IU.
3. Viral load: 1 day and 7 days after the last intervention session. Quantitative measurement of viral load in the blood using quantitative RT-PCR.
4. Chest X-ray changes: 1 day and 7 days after the last intervention session. Chest X-ray changes evaluated qualitatively and quantitatively.
5. Number of patients with IgG seroconversion: 1 day and 7 days after the last intervention session; number of patients who developed SARS-CoV-2 IgG antibodies.
6. Number of patients with IgM seroconversion: 1 day and 7 days after the last intervention; number of patients who developed SARS-CoV-2 IgM antibodies.
7. FEV1/FVC: 1 day and 7 days after the last intervention session. Pulmonary function tests performed bedside.
8. Time to symptoms recovery within 30 days. Measured time patient suffered symptoms until complete recovery.
9. Number of patients who required invasive ventilation within 30 days.
10. time to negative virus PCR within 30 days. The measured time until the patient had two negative SARS-CoV-2 PCRs.
11. mortality rate within 30 days.
12. number of barotrauma events within 7 days after the last session.
13. the number of adverse events in each arm.

INCLUSION CRITERIA
1. adults (age 18 or older)
2. male and female
3. positive SARS-CoV-2 RT-PCR
4. at least one risk factor for bad prognosis of COVID-19: hypertension, diabetes mellitus, ischemic heart disease, smoking, age >50, etc.
5. respiratory insufficiency: room air SpO₂ <94% or PaO₂/FiO₂ <300mmHg
6. ability to sign an informed consent

Exclusion Criteria
• negative SARS-CoV-2 RT-PCR
• HBO₂ therapy contraindication: pneumothorax, pneumomediastinum, claustrophobia, ear/sinus disease, known chronic pulmonary disease such as severe emphysema or known pulmonary bullae.
• pregnancy
• inability to sign an informed consent

CONTACTS
• Amir Hadanny, MD • +972544707381 • amir.had@gmail.com
• Shai Efrati, MD • efratisch@gmail.com
6. The Compassionate Use of Hyperbaric Oxygen Therapy in the Treatment of COVID-19
NCT04386265

Sponsor: SerenaGroup, Inc. (Collaborator: The Wound Treatment Center)
Information provided by (Responsible Party): SerenaGroup, Inc.

STUDY DESCRIPTION
This is an observational patient registry of COVID-19 patients treated with HBO_2 therapy. The retrospective analysis will focus on the reduction in need for mechanical ventilation in COVID-19 patients. The information will be gathered prospectively. Data will be collected from the patients’ medical record, including medical notes and data recorded into the study database.

STUDY DESIGN
Study type: observational (patient registry)
Estimated enrollment: 100 participants
Observational model: case-only
Time perspective: prospective
Target follow-Up duration: 2 years
Estimated study start date: May 11, 2020
Estimated primary completion date: May 11, 2022
Estimated study completion date: May 11, 2022

OUTCOME MEASURES
Primary Outcome Measures
1. gather information on patients treated with hyperbaric oxygen therapy; collect information on the reduction in need for mechanical ventilation in COVID-19 patients (time frame 24 months).

Secondary Outcome Measures
1. gather information on adverse events by following adverse events associated with the treatment of COVID-19 related to HBO_2 therapy (time frame 24 months).

ELIGIBILITY / INCLUSION CRITERIA
• study population: Adult patients with COVID-19
• ages eligible for study: 18 years and older (adult, older adult)
• sexes eligible for study: all
• sampling method: non-probability sample
• a signed and dated informed consent form for the off-label use of hyperbaric oxygen therapy specific to the institution where treatment is rendered
• subject is willing and able to comply with instructions and scheduled visits

EXCLUSION CRITERIA
• the subject has other concurrent conditions that in the opinion of the investigator may compromise patient safety
• the patient has an untreated pneumothorax

CONTACT
• Thomas E. Serena, MD • +617-674-1884 • serena@serenagroups.com
7. Hyperbaric Oxygen Therapy in Non-Ventilated COVID-19 Patients

NCT04409886 (Not yet recruiting)

Sponsor: Maimonides Medical Center, Brooklyn, New York
Information provided by (Responsible Party/PI): Ory Weisel, MD, Maimonides Medical Center

STUDY DESCRIPTION

Brief Summary: This study is a prospective randomized controlled, double-blind clinical trial performed on laboratory-confirmed COVID-19 infection admitted patients in the Shamir Medical Center. The trial will include 30 patients who will undergo either hyperbaric oxygen (HBO₂) therapy or normobaric oxygen (NBO₂) therapy, randomized on a 2:1 ratio, within 7 days of patient's need of oxygen supply in addition to the standard treatment including oxygen, drugs, steroids, bronchodilators, antibiotics and others.

The evaluation procedure includes symptom monitoring, room air saturation, vital signs monitoring, pulmonary function and blood tests at baseline, one day and one week after the last session. In addition, one hour prior to and post session saturation and vitals will be monitored.

STUDY DESIGN

Study type: interventional (clinical trial)
Estimated enrollment: 30 participants
Allocation: randomized
Intervention model: single group assignment
Masking: double-blind
Primary purpose: treatment

Official title: The Application of Hyperbaric Oxygen Therapy in Non-Ventilated COVID-19 Patients – Randomized Controlled Trial

Estimated study start date: June 1, 2020
Estimated primary completion date: December 31, 2020
Estimated study completion date: March 30, 2021

OUTCOME MEASURES

Primary Outcome Measures
1. oxygenation index (time frame: one day after the last session) PaO₂/FiO₂
2. SpO₂ (time frame: Six hours after a session) (room air saturation)

Secondary Outcome Measures
1. SpO₂ (time frame: one week after the last session) (room air saturation)
2. COVID-19 symptoms and level (time frame: one week after the last session)
3. radiologic: chest X-ray (time frame: one week after the last session)

ELIGIBILITY / INCLUSION CRITERIA

• within 7 days of patient's need of oxygen supply
• positive SARS-CoV-2 RT-PCR
• at least one risk factor for bad prognosis of COVID-19: hypertension, diabetes mellitus, ischemic heart disease, smoking, age >50, etc.
• respiratory insufficiency: room air SpO₂ <94% or PaO₂/FiO₂ <300 mmHg
• age >18
• ability to sign an informed consent
EXCLUSION CRITERIA

- negative SARS-CoV-2 RT-PCR
- HBO2 contraindication: pneumothorax, pneumomediastinum, claustrophobia, ear/sinus disease which are not allowed in HBO2 therapy, known chronic pulmonary disease: severe emphysema or known pulmonary bullae.
- pregnancy
- inability to sign an informed consent

CONTACT

- Ory Weisel, MD • 718-283-7936 • owiesel@maimonidesmed.org
- Gene Sobol • 718-283-2926 • gsobel@maimonidesmed.org
8. Hyperbaric Oxygen as an Adjuvant Treatment for Patients With COVID-19 and Severe Hypoxemia: NCT04477954 (Recruiting)

HBO₂ protocol

Patients will receive 90 minutes of hyperbaric oxygen at 1.45 ATA in a Revitalair430 hyperbaric chamber, and then continue with standard care including normobaric oxygen.

Sponsor: Asociación Argentina de Medicina Hiperbárica e Investigación

Collaborators: Hospital de Infecciosas Francisco Javier Muniz
Hospital General de Agudos D. F. Santojanni
Hospital Central de San Isidro Dr. Melchor Angel Posse

STUDY DESCRIPTION

The severity of COVID-19 is related to the level of hypoxemia, respiratory failure, how long it lasts and how refractory it is to increasing concentrations of inspired oxygen. Compromise of circulation due to edema that occurs from acute inflammation could be attenuated by the administration of hyperbaric oxygen (HBO₂).

Recently, hyperbaric oxygen has been reported to offer benefits in these matters in patients with SARS-CoV-2 hypoxemic pneumonia. In a report from China, where the administration of repeated HBO₂ sessions decreased the need for mechanical ventilation (MV) in patients admitted to the intensive care unit due to COVID-19, it was demonstrated that hyperbaric oxygen is capable of drastically increasing the amount of dissolved oxygen in the blood and maintaining an adequate supply of oxygen to the tissues. In addition to these effects, it can influence immune processes, both humoral and cellular, allowing a reduction in the inflammatory response. It also is known to induce antioxidative enzymes. HBO₂ is known to be safe and it has very few adverse effects. It is a procedure that has been approved by the Argentinian regulatory authorities for several years. In the current context of the COVID-19 pandemic and worldwide reports of mortality associated with severe cases of respiratory failure, it is essential to propose therapeutic strategies to limit or decrease respiratory compromise in the severe stages of COVID-19. This research is proposed to assess whether HBO₂ treatment can improve the natural history of severe hypoxemia due to COVID-19.

STUDY DESIGN

Study type interventional (clinical trial)
Estimated enrollment 80 participants
Allocation randomized
Intervention model parallel assignment
Intervention model description parallel assignment
Masking single (outcomes assessor)

OUTCOME MEASURES

Primary Outcome Measures
1. Time to normalize the oxygen requirement, which allows a pulse oximetry value in ambient air greater than or equal 93% and/or arterial blood gas with PaO₂ value greater than 60 mmHg in ambient air. (time frame: 15-30 days)

Secondary Outcome Measures
1. Need for invasive mechanical ventilation (IMV) and/or a diagnosis of acute respiratory distress syndrome (ARDS) (time frame: 30 days)
2. 30-day mortality (time frame: 30 days)
3. Hypotension with vasopressor requirement (time frame: 30 days)
4. Mortality [(time frame: 45 days / 60 days / 90 days and 180 days)
Other Outcome Measures
1. Adverse events [(time frame: 4 hours after hyperbaric session)]
 a. number of adverse events reported related to the device, Revitalair 430 hyperbaric chamber
 b. otalgias, ear obstruction, barotrauma, significant and constant changes in blood pressure, heart rate and others.

ELIGIBILITY / INCLUSION CRITERIA
• 18 years or older, all sexes.
• No previous hospitalizations in the last 6 months.
• Positive diagnostic test for COVID-19 according to the guidelines of the Argentine Ministry of Health at the time of enrollment.
• For patients in Intensive Care Unit with oxygen supplementation required, the need for continuous supply of oxygen to maintain saturation by oximetry pulse (SpO₂) greater than or equal to 93% or arterial gas with PaO₂ value greater than 60 mmHg

EXCLUSION CRITERIA
• Younger than 18 years of age
• Person unable to give consent
• Person who refuses to participate
• Pregnancy and lactation
• Participating in other study
• Requirement for mechanical ventilation
• Inability to maintain prolonged sitting position (at least 2 hours)
• Subject with contraindications to HBO₂ therapy (pulmonary shock, bullae, emphysema or untreated pneumothorax, severe seizures, uncontrolled hypertension, chronic obstructive disease of grade III or IV).

CONTACTS
• Mariana Cannellotto, MD • +5491165103300 • mariana.cannellotto@aamhei.org
• Fabrizio Verdini, MD • +5491127719470 • fabrizio.verdini@aamhei.org
9. Multicentre Randomized Controlled Trial of Hyperbaric Versus Normobaric Oxygen Therapy for COVID-19 Patients: NCT04500626 (Not yet recruiting)

HBO₂ protocol HBO2 protocol Patients will receive 90 minutes of hyperbaric oxygen at 1.45 ATA in a Revitalair430 hyperbaric chamber, and then continue with standard care including normobaric oxygen.

Sponsor: Ottawa Hospital Research Institute

Collaborator: Climate Foundation

STUDY DESCRIPTION

At least 1 in 6 COVID-19 patients admitted to hospital to receive supplemental oxygen will die of complications. In patients with COVID-19, invasive treatment such as mechanical ventilation (e.g., breathing with a machine) is associated with a 50% increased risk of death. Invasive treatments use a lot of health care resources in intensive care units and may lead to further deaths if patients do not have access to care.

The investigators aim to improve outcomes for COVID-19 patients by implementing hyperbaric oxygen (HBO₂) therapy. HBO₂ allows patients to breathe 100% oxygen in a special chamber at a pressure higher than sea level. It is approved by Health Canada for 14 conditions. HBO₂ is safe when administered by experienced teams.

There are two main causes of death in severe COVID-19 respiratory infections:

1. a decreased diffusion of oxygen from the lungs to the blood; and
2. an increased inflammatory response (also called a “cytokine storm”).

HBO₂ leads to increased oxygen levels in blood, has strong anti-inflammatory effects, and may destroy the virus responsible for COVID-19 disease. The initial experience with HBO₂ and COVID-19 from China, France and the United States is promising in that it prevents further worsening of the condition and need for intensive care.

The investigators propose to test the effectiveness of HBO₂ for COVID-19 patients who are admitted to hospital to receive supplemental oxygen. Using the most rigorous and innovative research methods, this Canadian-led international study will operate at 5 centers across 3 countries (Canada – Ottawa, Toronto, Edmonton; Switzerland – Geneva; UK – Rugby/London).

The investigators anticipate that when treated by HBO₂, COVID-19 patients needing extra oxygen to breathe will see significant health improvements as well as a decrease in complications, inflammation, need for invasive care, death, and cost of care.

STUDY DESIGN

Study type
interventional (clinical trial)

Estimated enrollment
234 participants

Allocation
randomized

Intervention model
parallel assignment

Masking
single (outcomes assessor)

Primary purpose
treatment

Official title
Multicentre Randomized Controlled Trial of Hyperbaric versus Normobaric Oxygen Therapy

Estimated study start date
August 2020

Estimated primary completion date
August 2022

Estimated study completion date
August 2022

OUTCOME MEASURES

Primary Outcome Measures

1. 7-level COVID ordinal outcome scale. This scale is based on patient's current status, supplemental oxygen requirement and performance status. (time frame: measured on Day 7)
Secondary Outcome Measures
1. Length of hospital stay measured in days (time frame: duration of study (to Day 28))
2. Number of days with oxygen supplementation (time frame: duration of study (to Day 28))
3. Daily oxygen flow values measured in L/min required to obtain saturation values ≥90%, (time frame: duration of study)
4. ICU admission (time frame: duration of study) Yes/No
5. ICU length of stay (time frame: duration of study) Measured in days, if applicable
6. Days on invasive mechanical ventilation or high flow oxygenation (time frame: duration of study)
7. Major arterial and venous thrombotic events (time frame: duration of study) e.g., stroke, pulmonary embolism, deep vein thrombosis
8. Sleep quality (time frame: duration of study) Sleep quality scale measured from 0 to 10.
 Higher number indicates worse sleep quality:
 0 = “best possible sleep” 10 = “worst possible sleep”
 (from: Capelleri et al. Health and Quality of Life Outcomes 2009: 7:54)
9. Fatigue (time frame: duration of study) Single-item fatigue report measured from 1 to 10.
 Higher number indicates worse fatigue: 1 = “not at all” 10 = “extremely”
10. 7-level COVID ordinal outcome scale (time frame: measured on Day 28)
 Same scale as the primary outcome; different timing as a secondary outcome
11. Mortality (time frame: duration of study) Number of deaths
12. Safety events (Incidence of any adverse events related to HBO₂ (time frame: duration of study)

ELIGIBILITY CRITERIA
ages eligible for study 18 Years and older (adult, older adult)
sexes eligible for study All
accepts healthy volunteers No

INCLUSION CRITERIA
• male or non-pregnant female patients
• age ≥18 years
• confirmed COVID-19 positive by PCR
• diagnosed with pneumonia requiring 21%<FiO₂≤100% to maintain saturation by pulse oximetry (SpO₂) ≥90%
• able and willing to comply with study procedures and follow-up examinations contained within the written consent form

EXCLUSION CRITERIA
• patient clinical status felt to be incompatible with HBO₂ therapy, e.g., respiratory failure requiring mechanical ventilation
• pregnancy, determined by a urine test
• hemodynamic instability requiring vasopressors
• inability to maintain a sitting position during treatment
• inability to effectively understand and communicate with the hyperbaric operator, or to give consent
• inability to spontaneously equalize ears and refusal of myringotomies
• contraindications to HBO₂ therapy (e.g., pneumothorax)

CONTACTS
Sylvain Boet, MD, PhD • 613-737-8899 ext 78187 • sboet@toh.ca
Joseph Burns, MSc • 613-798-5555 ext 14775 • josburns@ohri.ca