LCD for Hyperbaric Oxygen (HBO) Therapy (L36685)

LCD Information

Contractor Name: Noridian Healthcare Solutions, LLC

Contractor Number: 03201

Contractor Type: MAC A

LCD ID Number: L36685 **Status:** P-

LCD Title: Hyperbaric Oxygen (HBO) Therapy

Geographic Jurisdiction: Montana [Other Jurisdictions]

Original Determination Effective Date:

Original Determination Ending Date:

Revision Effective Date:

Revision End Date:

CMS National Coverage Policy: Language quoted from CMS National Coverage Determination (NCDs) and coverage provisions in interpretive manuals are italicized throughout the Local Coverage Determination (LCD). NCDs and coverage provisions in interpretive manuals are not subject to the LCD Review Process (42 CFR 405.860[b] and 42 CFR 426 [Subpart D]). In addition, an administrative law judge may not review an NCD. See §1869(f)(1)(A)(i) of the Social Security Act.

Unless otherwise specified, italicized text represents quotation from one or more of the following CMS sources:

- Correct Coding Initiative – Medicare Contractor Beneficiary and Provider Communications Manual – Pub. 100-09, Chapter 5.
- Social Security Act (Title XVIII) Standard References, Sections:
 - Title XVIII of the Social Security Act, Section 1862(a)(1)(A) states that no Medicare payment shall be made for items or services which are not reasonable and necessary for the diagnosis or treatment of illness or injury.
 - Title XVIII of the Social Security Act, Section 1862(a)(7). This section excludes routine physical examinations.
 - Title XVIII of the Social Security Act, Section 1862 (a)(1)(D) excludes payment for services that are investigational or experimental.
 - Title XVIII of the Social Security Act, Section 1862(a)(13)(C) addresses routine foot care.

Indications and Limitations of Coverage and/or Medical Necessity:

Notice: It is not appropriate to bill Medicare for services that are not covered (as described by this entire LCD) as if they are covered. When billing for non-covered services, use the appropriate modifier.

Compliance with the provisions in this policy may be monitored and addressed through post payment data analysis and subsequent medical review audits.

For purposes of coverage under Medicare, Hyperbaric Oxygen Therapy (HBOT) is a modality in which the entire body is exposed to oxygen under increased atmospheric pressure. The patient is entirely enclosed in a pressure chamber breathing 100% oxygen (O2) at greater than one atmosphere (atm) pressure. Either a mono-place chamber pressurized with pure O2 or a larger multi-place chamber pressurized with compressed air where the patient receives pure O2 by mask, head tent, or endotracheal tube may be used.
Hyperbaric Oxygen Therapy serves four primary functions:

1. It increases the concentration of dissolved oxygen in the blood, which augments oxygenation to all parts of the body; and
2. It replaces inert gas in the bloodstream with oxygen, which is then metabolized by the body; and
3. It may stimulate the formation of a collagen matrix and angiogenesis; and
4. It acts as a bactericide for certain susceptible bacteria.

Developed as treatment for decompression illness, this modality is an established therapy for treating medical disorders such as carbon monoxide poisoning, gas gangrene, acute decompression illness and air embolism. HBO is also considered acceptable as adjunctive therapy in the treatment of sequelae of acute vascular compromise and in the management of some disorders that are refractory to standard medical and surgical care or the result of radiation injury.

The following conditions meet coverage indications per National Coverage Determination (NCD 20.29)

Covered Conditions:

Program reimbursement for HBO therapy is limited to the following conditions:

1. Acute carbon monoxide intoxication,
2. Decompression illness,
3. Gas embolism,
4. Gas gangrene,
5. Acute traumatic peripheral ischemia. HBO therapy is a valuable adjunctive treatment to be used in combination with accepted standard therapeutic measures when loss of function, limb, or life is threatened.
6. Crush injuries and suturing of severed limbs. As in the previous conditions, HBO therapy would be an adjunctive treatment when loss of function, limb, or life is threatened.
7. Progressive necrotizing infections (necrotizing fasciitis),
8. Acute peripheral arterial insufficiency,
9. Preparation and preservation of compromised skin grafts (not for primary management of wounds),
10. Chronic refractory osteomyelitis, unresponsive to conventional medical and surgical management,
11. Osteoradionecrosis as an adjunct to conventional treatment,
12. Soft tissue radionecrosis as an adjunct to conventional treatment,
13. Cyanide poisoning,
14. Actinomycosis, only as an adjunct to conventional therapy when the disease process is refractory to antibiotics and surgical treatment,
15. Diabetic wounds of the lower extremities in patients who meet the following three criteria:

 a. Patient has type I or type II diabetes and has a lower extremity wound that is due to diabetes;
 b. Patient has a wound classified as Wagner grade III or higher; and
 c. Patient has failed an adequate course of standard wound therapy.

The use of HBO therapy is covered as adjunctive therapy only after there are no measurable signs of healing for at least 30 - days of treatment with standard wound therapy and must be used in addition to standard wound care. Standard wound care in patients with diabetic wounds includes: assessment of a patient’s vascular status and correction of any vascular problems in the affected limb if possible, optimization of nutritional status, optimization of glucose control, debridement by any means to remove devitalized tissue, maintenance of a clean, moist bed of granulation tissue with appropriate moist dressings, appropriate off-loading, and necessary treatment to resolve any infection that might be present. Failure to respond to standard wound care occurs when there are no measurable signs of healing for at least 30 consecutive days. Wounds must be evaluated at least every 30 days during administration of HBO therapy. Continued treatment with HBO therapy is not covered if measurable signs of healing have not been demonstrated within any 30-day period of treatment.

SPECIFIC CONDITIONS

The guidelines below are presented relative to specific treatment conditions and include criteria for diagnosis with expected frequency and duration of treatment.

1. Patients manifesting signs and symptoms of serious carbon monoxide poisoning (CO) (e.g., transient or prolonged unconsciousness, neurologic signs, cardiovascular dysfunction or severe acidosis) should be referred for HBO therapy regardless of COHb level, as COHb levels do not correlate with signs and symptoms. However, referral of patients with COHb > 25% is reasonable or when neuropsychological testing is abnormal. Treatment should begin at the time of diagnosis. Optimal dosing (pressure, duration, frequency) is not known but optimal benefit from HBOT occurs in those treated with the least delay after exposure. The majority of facilities offer single session HBOT to CO-poisoned patients; however, in selected patients repeated treatments may yield better outcome. Several protocols have been developed; however, most offer 2.8-3.0 ATA initial compression, then 2 ATA for 120-140 minutes, occasionally followed by additional 2 sessions for 90 minutes in six to twelve hour intervals, without further HBOT. Even with appropriate HBOT some patients will develop cognitive or other neurological sequelae which does not appear to be altered by continued HBOT. Children may be treated safely but may still have long-term problems. Pregnant women may be treated safely. Evidence of fetal distress is an indication of need for HBOT despite normal carboxyhemoglobin levels and the absences of symptoms in the mother.
2. Decompression Illness (Sickness) is the result of inert gas bubbles in tissues and/or blood causing organ dysfunctions. It can be caused by a reduction in ambient pressure during ascent from a dive, rapid altitude excursions or a hyperbaric/hypobaric chamber. The resulting clinical manifestations include joint pain (bends), cutaneous eruptions or rashes, neurological dysfunction, cardiorespiratory symptoms and pulmonary edema, shock, and death. Diagnosis of Decompression injury is made on the basis of signs and symptoms after a dive or altitude exposure, which manifest as paresthesias, hypesthesia, joint pain, skin rash and malaise while more serious signs may be motor weakness, ataxia, dyspnea, hypotension, and shock leading to death. All symptoms manifest within 24 hours unless there is an additional insult. Treatment of choice for decompression illness is HBO therapy. The result is immediate reduction in the volume of bubbles. Recommended treatment is administration of 100% oxygen (1 ATA) at ground level or at elevated pressure (HBO) when feasible. The majority of symptoms will resolve with supportive measures; however, it is generally agreed that complete resolution is most likely to occur with HBO therapy. The treatment prescription is highly variable and case specific; however the great majority of cases respond to a single treatment. Although a small minority of divers with severe neurological injury may not reach a clinical plateau until 15-20 repetitive treatments have been administered (< 2.82 ATA), formal statistical analysis supports the efficacy of no more than 5-10 repetitive treatments for most individuals. A summary of current recommendations for adjunctive therapy is available on the Undersea and Hyperbaric Society website (http://www.uhms.org).

3. Air or Gas Embolism (AGE) occurs when gases enter the venous or arterial vasculature embolizing in a large enough volume to compromise the function of an organ or body part and results in ischemia to the affected areas. Arterial gas embolism classically described during submarine escape training can also occur as a result of blast injury, mechanical ventilation, penetrating chest trauma, chest tube placement and bronchoscopy. Venous gas embolism classically occurred after compressed gas diving or rapid exposure to altitude; however, medical intervention is the most common cause. Accidental intravenous air injection occurs with cardiopulmonary bypass accidents, gastrointestinal endoscopy, hydrogen peroxide irrigation, arthroscopy, central venous catheter placement or disconnection, endoscopic or laparoscopic procedures, and dental procedures, to name only a few possible scenarios. Clinical deficits can occur after intra-arterial injections of very small volumes of air while larger intravenous injection is often asymptomatic. Presumptive diagnosis of AGE is made on the basis of clinical criteria. Diagnostic imaging is unnecessary as it has low diagnostic sensitivity (and may delay therapy) but may exclude other etiologies for the symptoms. HBO therapy, the treatment of choice, is most effective when initiated early. Immediate treatment is airway management, maintenance of blood pressure and administration of high oxygen concentration with HBOT as quickly as the patient can be stabilized. Administration of repetitive treatments is recommended until there is no further improvement, typically after no more than one to two hyperbaric sessions, but occasionally as many as five. Standard treatment schedules are those of the U.S. Navy (U.S. Navy Diving Manual available at http://www.supsalv.org/).

4. Clostridial Myositis and Myonecrosis (Gas Gangrene) is an acute, rapidly invasive infection of the muscle characterized by profound toxemia, extensive edema, massive death of tissue and variable degree of gas production. The diagnosis of gas gangrene is based on clinical data supported by the demonstration of Gram-positive rods from the fluids of the involved tissues as well as a virtual absence of leukocytes. Culture results are unpredictable while sialidase immunoassays may allow accurate identification of the Clostridium species. Tissue gas seen in a feather-like pattern radiologically, associated with crepitus, is an early and characteristic sign. An associated thin serosanguinous exudate with a sickly, sweet odor associated with disproportionate pain is essentially diagnostic. The onset of gangrene can occur one to six hours after injury and presents with severe and sudden pain at the infected area. The goal of HBO therapy is to stop alpha-toxin production, requiring tissue oxygen concentrations of 250 mm Hg, thereby inhibiting further bacterial growth at which point the body can use its own host defense mechanisms. HBO treatment starts as soon as the clinical picture presents and is supported by a positive Gram-stain. The greatest reduction in mortality results from treatment utilizing HBOT, antibiotic therapy and surgery. Debridement of necrotic tissue can be performed between HBO treatments when clear demarcation between dead and viable tissue is evident. The usual treatment consists of oxygen administered at 3.0 ATA pressure for 90 minutes three times in the first 24 hours. Over the next four to five days, treatment sessions twice a day are usual, for up to 15 sessions. The actual decision for termination of therapy is dependent upon the patient’s response to HBO therapy.

5. Crush injuries and suturing of severed limbs, acute traumatic peripheral ischemia (ATI), and acute peripheral arterial insufficiency associated with arterial embolism and thrombosis share the common pathophysiology of Reperfusion Injury. Acute traumatic ischemia is the result of injury by external force or violence, compromising circulation to an extremity. Similarly, acute peripheral arterial insufficiency (PAI) is acute onset of ischemia of an extremity secondary to arterial embolus or thrombus. Presentation is within hours to a few days after the event. The extremity is then at risk for tissue loss and necrosis with subsequent amputation. Emergent surgical intervention is imperative if the extremity is to be salvaged. Secondary complications are frequently seen: infection, non-healing wounds, and non-united fractures despite the restoration of circulation, due to the reactive edema which presents post restoration of blood flow. The goal of HBO therapy is to enhance oxygen at the tissue level to support viability during the post injury period. When tissue oxygen tensions fall below 30mm Hg, the body’s ability to respond to infection and wound repair is compromised. Using HBO at 2-2.4 ATA, the tissue oxygen tension is raised to a level such that the body’s responses can become functional again. The benefits of HBO therapy for this indication are:

- Increased oxygen delivery per unit of blood flow or enhanced tissue oxygenation,
- Edema reduction, and
- Reduction in the complication rates for infection, nonunion and amputation.

The use of HBOT is expected to be in support of the definitive surgical procedure (re-implantation, embolectomy, thrombectomy, decompression of a compartment syndrome or removal of the flow limiting condition of the limb).

HBO is indicated within the first 4-6 hours of the acute event, and only after documented restoration of the blood circulation. For reperfusion injuries, crush injuries or pending compartment syndrome, therapy beyond 2-3 days has not shown beneficial salvage or further limit to loss of tissue or limb. Post fasciotomy demarcation may require up to 2 weeks of twice daily treatments prior to definitive determination of benefit. Therapy initiated or continued longer than two weeks from the inciting injury has not been determined to be beneficial. Beyond two weeks the condition is considered chronic and would not be considered reasonable and necessary. The usual treatment schedule is two to three 90 minute treatment periods daily for the first 24-48 hours. Additional 90 minute treatment sessions daily for the next 2-3 days may be required. For acute traumatic peripheral ischemia, crush injuries and recently...
restored severed limbs, with resultant compartment syndromes, HBOT is a valuable adjunctive treatment to be used in combination with accepted standard surgical and pharmacologic therapeutic measures, when loss of function, limb, or life is threatened. Edema or after effects of acute arterial insufficiency may be treated by limited HBO therapy similar to that of crush injuries or acute ischemia with reperfusion signs, if they are persistent after reconstructive surgery has restored large vessel function and perfusion. Reperfusion injury treatment with HBOT is not expected to exceed 15 sessions over the course of a 3-7 day acute treatment.

6. The principal treatment for Progressive Necrotizing Infections (Necrotizing Fasciitis) is surgical debridement and systemic antibiotics. HBO therapy is recommended as an adjunct only in those settings where mortality and morbidity are expected to be high despite aggressive standard treatment. Progressive necrotizing fasciitis is a relatively rare infection. It is usually a result of a group A streptococcal infection beginning with severe or extensive cellulitis that spreads to involve the superficial and deep fascia, producing thrombosis of the subcutaneous vessels and gangrene of the underlying tissues. A cutaneous lesion usually serves as a portal of entry for the infection, but sometimes no such lesion is found. It may be confused with Clostridial infection though seldom produces gas in the tissues. The histologic hallmark is extensive inflammation and necrosis of the subcutaneous fat, fascia and muscle. Numerous bacterial types may produce bullous lesions with foul or fermented aroma. Hyperbaric oxygen may be a beneficial adjunct for a subset of patients with anaerobic gram negative necrotizing fasciitis.

The recommended HBO treatment protocol is 90 minutes at 2.5 ATA every 8 hours for the first day in conjunction with surgical debridement of infected and necrotic tissue, and then twice daily for a maximum of 10 treatments.

7. Preparation and preservation of compromised skin grafts utilizes HBO therapy for graft salvage in cases where hypoxia or decreased perfusion has compromised viability acutely. This indication is “not for primary management of wounds,” i.e. empiric treatment of prophylactic maintenance of split thickness skin grafts placed on wounds or operative sites (Mohs). Substantial data suggests HBO therapy may improve composite graft survival in the immediate postoperative period when viability appears threatened due to a mechanical complication. It is not indicated to correct the mechanical complication but may be adjunctive therapy once the “mechanical” problem has been corrected and the graft is jeopardized by sequella for which HBO has an established beneficial effect. Covered services require the presence of a graft (flap) with confirmed initial viability, followed by evidence of compromise post correction of the inciting mechanical event.

Bioengineered or allogeneic skin substitutes and traditional split thickness skin grafts placed primarily for wound coverage do not meet CMS NCD 20.29 interpretation for coverage. “The covered indication requires that there be a compromised skin graft” per Transmittal 129, 10/9/2000, Program Memorandum AB-00-15, CR 1138. HBO therapy is not considered reasonable and necessary for the initial preparation of the body site for a graft (prior to grafting) except as covered for other entities (radionecrosis, resistant osteomyelitis, neuropathic ulcers, etc.).

Treatments are given intensively initially for up to 72 hours followed by re-evaluation of the wound. It is not unusual to receive 2-3 treatments per day for up to 3 days post creation of the graft when viability appears threatened. When the graft appears stable, treatments are reduced to daily or discontinued. The number of sessions provided to enhance graft survival is not expected to exceed 20.

8. Chronic refractory osteomyelitis persists or recurs following appropriate interventions. These interventions include the prolonged use of antibiotics, drainage of the abscess, immobilization of the affected extremity, and surgical debridement with removal of as much of infected bone matrix as possible.

Medicare may cover the adjunctive use of HBO therapy for chronic refractory osteomyelitis that has been shown to be unresponsive to conventional medical and surgical management. Selection of an appropriate antimicrobial regimen requires a culture obtained from infected bone such as a surgical specimen or biopsy.

HBO therapy is an adjunctive therapy used with the appropriate antibiotics and surgical debridement to eliminate the necrotic bone acting as a foreign body. When the site of the bone infection is not amenable to debridement or resection, HBOT may be indicated to enhance systemic therapy though is not indicated as primary therapy alone.

HBO treatments are usually delivered daily for a period of 90-120 minutes and it is not unusual to receive daily treatments following major debridement surgery. The usual course of therapy lasts 4-6 weeks with daily sessions lasting 90-120 minutes up to a maximum of 60 treatments within a 12 month period. Additional treatments may be considered reasonable and necessary on redetermination. Hyperbaric oxygen therapy is not considered medically reasonable or necessary for treatment of osteomyelitis of small, solid exposed bones of the forefoot and fingers (metatarsal head, phalanges, sesamoid) which are more effectively treated with debridement and receive minimal benefit from HBOT due to limited perfusion. HBOT is not considered reasonable and necessary for primary or non-adjunctive treatment of chronic osteomyelitis.

9. HBO’s use in the treatment of Osteoradionecrosis and Soft Tissue Radiation Injury (Radionecrosis) is one part of an overall plan of care that also includes debridement or resection of nonviable tissue in conjunction with antibiotic therapy. A consistent cause and effect of radiation injury is vascular obliteration and stromal fibrosis or scarring; subsequently, the known impact of hyperbaric oxygen therapy, stimulation of angiogenesis, is an important mechanism of recovery. A reduction in fibrosis of soft tissue as well as mobilization and increase of stem cells within radiated tissue has been documented predominantly in animal studies; however, the impact of HBOT is likely to involve all these mechanisms.

HBOT treatment can be indicated in the preoperative and postoperative management of existing osteoradionecrosis or soft tissue radionecrosis, but must be utilized as an adjunct to conventional therapy. Beneficiaries suffering from soft tissue damage or bone necrosis present with disabling, progressive, painful tissue breakdown, bleeding, bowel or bladder dysfunction, wound dehiscence, infection, tissue loss and graft or flap loss.

Prerequisite for treatment includes history of radiation treatment to the region of the documented injury, terminating at least 6 months
prior to onset of signs or symptoms and/or planned surgical intervention at the site. Numerous forms of soft tissue radiation necrosis and treatment with HBO have been documented with beneficial effect.

The goal of HBO treatment is to increase the oxygen tension in both hypoxic bone and tissue to stimulate growth in functioning capillaries, fibroblastic proliferation and collagen synthesis.

The recommended daily treatments are designed around the stages of radionecrosis last 90-120 minutes at 2.0 to 2.5 ATA. The duration of HBO therapy for these patients is highly individualized but is not expected to exceed 4-8 weeks therapy. The Marx mandibular osteoradionecrosis protocol extends from 30-60 treatments based on stage I-III, adhering to the established principle that all necrotic bone must be debrided. Soft tissue radionecrosis usually responds with 30-40 treatments, followed by reconstruction if deemed necessary. An additional 10 treatments are usual following the reconstruction for support of the underlying and surrounding tissue. All treatment is individualized and should be assessed for benefit and outcome each 30 days.

No demonstrable evidence of improvement post two 30 day periods of HBOT (2.0-2.5 ATA, for 90 to 120 minutes, 5 days per week) suggests lack of benefit and subsequent treatments will be denied as not medically reasonable and necessary. No benefit has been demonstrated for treatment of acute radiation injury or burn, usually manifest coincident with radiation therapy or within the ensuing 6 months of the therapy.

Coverage for osteoradionecrosis of the jaw is limited to cases with evidence of overt fracture or bony resorption. Data to justify HBOT prophylaxis for osteoradionecrosis in a previously irradiated mandible undergoing tooth extraction is lacking at this time; consequently this is a non-covered service.

HBO is not covered to prepare the patient for dental extraction, when radiation therapy has not been done at least 6 months prior, in order to prevent the development of osteoradionecrosis.

10. Individuals with CO poisoning may also have been exposed to cyanide and the combination may have synergistic toxicity. Severe cyanide poisoning is rapidly fatal while symptoms of mild cyanide poisoning may mimic CO poisoning. Along with supportive care (ventilation, supplemental oxygen and blood pressure support) a cyanide antidote may be administered, some of which may yield unreliable monitoring results (hydroxocobalamin). Nitrites which induce methemoglobinemia, potentially impairs the oxygen-carrying capacity of hemoglobin and is now considered contraindicated in the setting of concomitant CO poisoning. Treatment protocol and dosing is directed to the Carbon Monoxide poisoning as that for cyanide poisoning appears to be theoretical and not well substantiated by human studies.

11. Actinomycosis is a bacterial infection caused by Actinomyces Israeili. Findings include slow growing granulomas that later break down, discharging viscid pus containing yellow granules. The treatment includes prolonged administration of appropriate antibiotics with surgical incision and draining of accessible lesions. When the disease process has been shown refractory to antibiotics and surgery, HBO therapy may be considered reasonable and necessary.

12. Treatment of diabetic wounds of the lower extremities: Refer to #15 of the covered indications of NCD 20.29 listed in the previous section of the LCD.

Adjunctive treatment of an ulcer of the lower extremity deemed to be secondary to the neuropathic effects of diabetes will be allowed no more than 40 treatments (90-120 minutes daily) without documentation of improvement. Wound volume or surface area is expected to measurably diminish over 30 days of wound care with adjunctive HBO. Continued treatment with HBO therapy is non-covered if measurable signs of healing have not been demonstrated within any 30-day period of treatment. “Measurable signs of healing” are best defined as specific, documented, clinical evidence of healing. Physician statements should be descriptive and complete with interval measurements to substantiate wound improvement.

NOTE: Wagner grades are a commonly used classification system for diabetic wounds and include five grades (Wagner 1981, Cianci 1997). The five grades are defined as follows: grade 0 = no open lesion; grade 1 = superficial ulcer without penetration to deeper layers; grade 2 = ulcer penetrates to tendon, bone, or joint; grade 3 = lesion has penetrated deeper than grade 2 and there is abscess, osteomyelitis, pyarthrosis, plantar space abscess, or infection of the tendon and tendon sheaths; grade 4 = wet or dry gangrene in the toes or forefoot; grade 5 = gangrene involves the whole foot or such a percentage that no local procedures are possible and amputation (at least at the below the knee level) is indicated.

NOTE: Failure to respond to standard wound care occurs when there are no measurable signs of healing (per NCD 20.29) for at least 30 consecutive days of appropriate wound care during which the patient has documented evidence of “optimization for wound healing” and there is no appreciable change in the wound. Documentation of all aspects of optimization defined by the NCD (clarified by this LCD) and the absence of improvement in the wound characteristics constitutes stalled wound healing and suggests that it may benefit from adjunctive HBO.

NOTE: An ankle brachial index of not less than .6 is considered the standard required for healing of a lesion on a diabetic's foot. Alternative measurements of toe pressures, plethysmography or similar demonstration of small vessel perfusion may be considered if viable results cannot be obtained in the situation of calcified or non-compressible vessels of the foot and ankle. Transcutaneous oxygen measurements cannot predict whether a patient will respond to HBO but may provide insight into the response to HBO or revascularization. HBO should not be used as a substitute for revascularization.

NOTE: As with #8 above, standard therapy for osteomyelitis underlying a chronic ulcer, or mal perforans ulcer, includes surgical debridement/excision of the infected nidus of bone.

Hyperbaric Oxygen Therapeutic Services
Therapeutic services are hospital outpatient services furnished incident to the services of a physician (or NPP) in the treatment of patients and must be furnished on a physician’s order and delivered under physician supervision.

Appropriate “direct physician supervision” is a requirement for Medicare coverage of Hyperbaric Oxygen Therapeutic Services.

For therapeutic services furnished after CY2011 and following, whether in the hospital or CAH or in an on-campus or off-campus outpatient department of the hospital or CAH as defined at 42 CFR 413.65, “direct supervision” means that the physician (or NPP) must be immediately available to furnish assistance and direction throughout the performance of the procedure. It does not mean that the physician need be physically present in the room where the procedure is performed. While not defined in terms of time or distance the Centers for Medicare and Medicaid Services (CMS) has indicated that the physician needs to be “physically present, interruptible and available without interval or time” when Medicare beneficiaries are physically being treated or a procedure is being performed.

The physician cannot be so far away from the location where the service is being furnished that he could not intervene immediately. This provision applies to all providers and facilities rendering HBOT to any Medicare beneficiary. Further clarification by CMS in CR8228, Mar.1, 2013 states:

Immediate availability requires the immediate physician presence of the supervisory physician. For services furnished on-campus, the supervisory physician may not be so physically distant from the location where the hospital/CAH or outpatient services are being furnished that he or she could not intervene right away...A supervisory physician may furnish direct supervision from a physician office or other nonhospital space that is not physically part of the hospital campus where the service is being furnished as long as he remains immediately available. Similarly, an allowed practitioner can furnish direct supervision from any location in or near an off-campus hospital or CAH building that houses multiple hospital provider-based departments where the services are being furnished as long as the supervisory practitioner is immediately available.

The supervisory physician must have within his or her State scope of practice and hospital-granted privileges, the knowledge, skills, ability and privileges to perform the service or procedure. Specifically trained ancillary staff and technicians are the primary operators of some specialized therapeutic equipment, and while in such cases CMS does not expect the supervisory physician to operate this equipment instead of the technician, CMS does expect the physician or non-physician practitioner to be knowledgeable about the therapeutic service and clinically able to furnish the service.

The supervisory responsibility is more than the capacity to respond to an emergency, and includes the ability to take over the performance of a procedure or provide additional orders. CMS would not expect that the supervisory physician would make all decisions unilaterally without informing or consulting the patient’s treating physician. In summary, the supervisory physician or NPP must be clinically able to supervise the service or procedure. [42 CFR 410.26(a)(2) and 410.32(b)(3)(ii)] [42 CFR 410.27(f)] CR8228,T169,Mar1,2013.

The Centers for Medicare and Medicaid services has not designated services 99183 or G2077 eligible for classification as Non-Surgical Extended Duration Therapeutic Services, allowing transition from direct supervision to general supervision at the discretion of the supervising physician.

In order to satisfy the immediately available criteria, for HBO therapy performed in an outpatient hospital, on-campus or off campus provider-based department, the physician (or qualified NPP) must be present in the office suite or at a location with a maximum of a five (5) minute response time to the chamber. For HBO performed in a physician office, the physician (or qualified NPP) must be present in the office suite.

Direct supervision requires the physician to be prepared to intervene or perform the service. This includes the ability to perform or change the procedure during its course and /or respond to the needs of a particular patient for whom he is rendering service. The physician must have the ability to perform the service or procedure within his State Scope of Practice.

Provider Qualifications/Certification

While HBO can be a life-saving or limb preserving therapy, there are significant complications and precautions that may be associated with HBOT. Complications present infrequently in individual patients receiving HBOT within single or multi-place chambers, but are potentially severe and life-threatening. Tympanic membrane injury is most common and can be accompanied by systemic response including vomiting, aspiration and seizures while in the confines of the HBO chamber. Oxygen toxicity with chest pain, seizures, altered states of consciousness or anxiety require prompt evaluation. The occurrence of a pneumothorax, with possible tension component, requires immediate differentiation from lesser issues and appropriate intervention. Thus, the Scope of Practice for a physician supervising HBOT must include all components of patient evaluation necessary to evaluate the potential HBOT recipient and to ensure that there is no relative contraindication to treatment. The physician supervising HBOT should be both cognizant of the potential hazards of the therapy and have the capability of immediate and appropriate treatment of the complication should it arise. Supervising Physician’s documented training shall include the experience and expertise necessary to diagnose and treat the established complications of HBOT occurring while the patient is in the facility under his care. These potential complications include tension pneumothorax, respiratory decompensation secondary to aspiration, seizures, acute tympanic membrane injury, signs of oxygen toxicity and hypoxia as well as differentiation of these problems from anxiety or claustrophobia. All potential treatment of medical and surgical emergencies arising in the patient receiving HBOT must be within the scope of practice of the physician providing direct supervision who is immediately available throughout the HBOT session.
Qualified Providers may supervise HBOT services, if such service including definitive evaluation of the patient is included within their State Scope of Practice, or if their required supervision or collaborative agreement is with a physician qualified to provide HBOT services who remains immediately available and if the provider meets the educational requirements identified herein.

Physicians (or NPP) supervising Hyperbaric Oxygen Therapy should be certified in Hyperbaric Medicine by the American Board of Emergency Medicine (ABEM), the American Board of Preventive Medicine (ABPM) or the American Osteopathic Conjoint Committee of Undersea and Hyperbaric Medicine (AOCUHM) or other entity adopting Hyperbaric Medicine training protocol by completion of a minimum 40-hour training experience in a program approved by the American College of Hyperbaric Medicine (ACHM) or The Undersea and Hyperbaric Medical Society (UHMS).

Advanced Cardiac Life Support (ACLS) training and certification of supervising physicians (and NPP) is required in all points of service and for any physician supervising HBOT in all locations, or NPP supervising HBOT in collaboration with a qualified provider in physician offices, clinics and off-campus hospital site, and in on-campus provider-based departments for which an alternative qualified provider response time to the chamber can be expected to exceed five minutes.

The Facility shall ensure that there is adequate documentation of direct physician supervision for the procedure during the time when Medicare patients are receiving services.

The CMS encourages physicians who perform HBO therapy to obtain adequate training in the use of HBO therapy and in Advanced Cardiac Life Support (ACLS) and/or Advanced Trauma Life Support (ATLS). It is also reasonable and necessary to expect the hospital or facility that provides the setting for the delivery of HBOT to complete the process of credentialing, adhering to policies set forth in the LCD as well as NCD 20.29. This would require that the attending/supervising physician provide documentation supporting credentials in hyperbaric medicine and is qualified to manage the scope of work required in the delivery of hyperbaric oxygen therapy, as well as being able to manage an acute HBOT precipitated emergency consistent with scope of practice defined by the state and facility. The appropriate certification and/or accreditation must be obtained within 6 months of this LCD becoming effective and made available to the contractor upon request.

- Limited license providers performing hyperbaric medicine services must have an unlimited licensed physician immediately available to render assistance if needed.
- Medicare reimbursement shall be limited to facilities documenting the supervision requirements for HBOT defined in this LCD. Facilities and providers not meeting the safety, reasonable and necessary provisions of this LCD should not bill the Medicare program for reimbursement of non-covered services.

Limitations

Topical Application of Oxygen

This method of administering oxygen does not meet the definition of HBO therapy as stated above, as its clinical efficacy has not been established. Therefore, Medicare considers the topical application of oxygen not reasonable and necessary. Medicare reimbursement will be limited to therapy that is administered in a chamber (including single or multi-place units).

Non-Covered Conditions

All other indications not specified under §270.4(A) are not covered under the Medicare program. No program payment may be made for any conditions other than those listed in §270.4(A).

No program payment may be made for HBO in the treatment of the following conditions (per NCD20.29):

1. Cutaneous, decubitus, and stasis ulcers.
2. Chronic peripheral vascular insufficiency.
3. Anaerobic septicemia and infection other than clostridial.
4. Skin burns (thermal).
5. Senility.
7. Cardiogenic shock.
8. Sickle cell anemia.
9. Acute thermal and chemical pulmonary damage, i.e., smoke inhalation with pulmonary insufficiency.
10. Acute or chronic cerebral vascular insufficiency.
11. Hepatic necrosis.
12. Aerobic septicemia.
14. Tetanus.
15. Systemic aerobic infection.
16. Organ transplantation.
17. Organ storage.
18. Pulmonary emphysema.
19. Exceptional blood loss anemia.
20. Multiple Sclerosis.
22. Acute cerebral edema.
Any medical condition specified above shall not be treated adjunctively or primarily by HBOT for reimbursement by the Medicare program as data supporting its use has not been established as medically beneficial. Services deemed treatment for these primary conditions will be denied as Not Reasonable and Necessary.

The following conditions are conditions that are expected to be provided in the inpatient only setting due to the acute and critical nature of the disease, concomitant conditions, and the need for correlation with other acute, invasive or monitoring services; gas gangrene, sequela of acute peripheral ischemia (including reperfusion conditions of arterial embolism and thrombosis, reimplantation and/or crush injuries of the extremities), necrotizing fasciitis, air embolisms, carbon monoxide/cyanide poisoning. Therefore, HBO therapy for these services in an outpatient or non-acute care setting would be considered not reasonable and necessary.

Pregnancy is considered a contraindication to HBOT except in the case of carbon monoxide poisoning for which it is specifically indicated on an emergent basis.

As published in CMS IOM 100-08, Chapter 13, Section 13.5.1, in order to be covered under Medicare, a service shall be reasonable and necessary. When appropriate, contractors shall describe the circumstances under which the proposed LCD for the service is considered reasonable and necessary under Section 1862 (a)(1)(A). Contractors shall consider a service to be reasonable and necessary if the contractor determines that the service is:

- Safe and effective.
- Not experimental or investigational (exception: routine costs of qualifying clinical trial services with dates of service on or after September 19, 2000, that meet the requirements of the Clinical Trials NCD are considered reasonable and necessary).
- Appropriate, including the duration and frequency that is considered appropriate for the service, in terms of whether it is:
 - Furnished in accordance with accepted standards of medical practice for the diagnosis or treatment of the patient’s condition or to improve the function of a malformed body member.
 - Furnished in a setting appropriate to the patient’s medical needs and condition.
 - Ordered and furnished by qualified personnel.
 - One that meets, but does not exceed, the patient’s medical needs.
 - At least as beneficial as an existing and available medically appropriate alternative.

Italicized and/or quoted material is excerpted from the CMS coverage and benefit manuals, National Coverage Determination 20.29, or American Medical Association, Current Procedural Terminology (CPT) codes.

Coding Information

Bill Type Codes:

Contractors may specify Bill Types to help providers identify those Bill Types typically used to report this service. Absence of a Bill Type does not guarantee that the policy does not apply to that Bill Type. Complete absence of all Bill Types indicates that coverage is not influenced by Bill Type and the policy should be assumed to apply equally to all claims.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Hospital Inpatient (Including Medicare Part A)</td>
</tr>
<tr>
<td>13</td>
<td>Hospital Outpatient</td>
</tr>
<tr>
<td>85</td>
<td>Critical Access Hospital</td>
</tr>
</tbody>
</table>

Revenue Codes:

Contractors may specify Revenue Codes to help providers identify those Revenue Codes typically used to report this service. In most instances Revenue Codes are purely advisory; unless specified in the policy services reported under other Revenue Codes are equally subject to this coverage determination. Complete absence of all Revenue Codes indicates that coverage is not influenced by Revenue Code and the policy should be assumed to apply equally to all Revenue Codes.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0413</td>
<td>Respiratory Services - Hyperbaric Oxygen Therapy</td>
</tr>
</tbody>
</table>

CPT/HCPCS Codes:

- 99183 PHYSICIAN OR OTHER QUALIFIED HEALTH CARE PROFESSIONAL ATTENDANCE AND SUPERVISION OF HYPERBARIC OXYGEN THERAPY, PER SESSION
- G0277 HYPERBARIC OXYGEN UNDER PRESSURE, FULL BODY CHAMBER, PER 30 MINUTE INTERVAL

ICD-10 Codes that Support Medical Necessity:
Note: Providers should continue to submit ICD-10-CM diagnosis codes without decimals on their claim forms and electronic claims.

It is the provider’s responsibility to select codes carried out to the highest level of specificity and selected from the ICD-10-CM code book appropriate to the year in which the service is rendered for the claims(s) submitted.

Please refer to NCD 20.29 Hyperbaric Oxygen Therapy for covered diagnoses and make reference to TN 1580 (CR 9252).

Covered ICD-10 diagnoses codes may be downloaded at:
ICD-10-CM codes, click open and choose the spreadsheet 20.29 HBO Therapy.

<table>
<thead>
<tr>
<th>XX000</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

General Information

Associated Information

Documentation Requirements

1. All documentation must be maintained in the patient’s medical record and made available to the contractor upon request.

2. Every page of the record must be legible and include appropriate patient identification information (e.g., complete name, dates of service(s)). The documentation must include the legible signature of the physician or non-physician practitioner responsible for and providing the care to the patient.

3. The submitted medical record must support the use of the selected ICD-10-CM code(s). The submitted CPT/HCPCS code must describe the service performed.

4. The medical record documentation must support the medical necessity of the services as directed in this policy.

5. Documentation that a trained emergency response team is available and that the setting provides the required availability of ICU services that could be needed to ensure the patient’s safety if a complication occurred.

6. The documentation present in the clinical record must provide an accurate description and diagnosis of the medical condition supporting that the use of HBO is reasonable and medically necessary. The medical documentation must include but is not limited to the following:

- An initial assessment, which includes a history and physical that clearly substantiates the condition for which HBO is recommended. This should also include any prior medical, surgical and/or HBO treatments.
- Documentation of the procedure (logs) including ascent time, descent time and pressurization level. There should be a treatment plan identifying timeline and treatment goals.
- Physicians’ progress notes that describe the physical findings, type(s) of treatment(s) provided, number of treatments provided, the effect of treatment(s) received and the assessment of the level of progress made toward achieving the completion of established therapy goals.
- Physician-to-physician communications or records of consultations and/or additional assessments, recommendations or procedural reports.
- Laboratory reports (cultures or Gram stains) that confirm the diagnosis of necrotizing fasciitis are required and must be present as support for payment of HBO.
- X-ray findings and bone cultures confirming the diagnosis of osteomyelitis are required and must be present as support for payment of HBO.
- Documentation to support the presence of gas gangrene as proven with laboratory reports (Gram stain or cultures) and X-ray.
- Documentation of date and anatomical site of prior radiation treatments.
- Documentation supporting date of skin graft and compromised state of graft site.
- Documentation of date and anatomical site of prior radiation treatments.
- Documentation to support the presence of gas gangrene as proven with laboratory reports (Gram stain or cultures) and X-ray.
- Documentation of date and anatomical site of prior radiation treatments.
- Documentation supporting date of skin graft and compromised state of graft site.
- For diabetic wounds of the lower extremity, the Wagner classification of the wound and the failure of an adequate course (at least 30 days) of standard wound therapy must be documented at the initiation of therapy.
 - Documentation must include criteria and exam consistency to establish the diagnosis of a Wagner’s grade III wound or higher.
 - Documentation of standard wound care in patients with diabetic wounds must include: assessment of a patient’s vascular status and documentation of correction of any vascular problem sufficient to impair wound healing in the affected limb; documentation of optimization of nutritional status; documentation of optimization of glucose control; documentation of debridement by any means to remove devitalized tissue; documentation of maintenance of a clean, moist bed of granulation tissue with appropriate moist dressings; documentation of efforts for appropriate off-loading; and documentation of necessary treatment to resolve any infection that might be present. Failure to respond to standard wound care occurs when there is no documentation of measurable signs of healing for at least 30 consecutive days post optimization for healing. The medical record must include, at a minimum, a wound evaluation at least every 30 days during administration of HBO therapy.

Utilization Guidelines
In accordance with CMS Ruling 95-1 (V), utilization of these services should be consistent with locally acceptable standards of practice.

Use of HBOT exceeding the outlined frequencies in the covered indications will be considered Not Reasonable and Necessary. Reconsideration for extension of treatment duration will be available upon appeal.

Medicare will cover a total of 60 Hyperbaric Oxygen sessions (99183) per 12 month period.

Medicare will cover G0277 services up to 5 per day per beneficiary

The diagnosis should be established by the referring or treating physician prior to the initiation of HBO therapy.

Continued HBO therapy without documented evidence of effectiveness does not meet the Medicare definition of medically necessary treatment. Thorough re-evaluation should be made at least every 30 days for documentation of response to therapy. Documentation to support effectiveness of the therapy must be made available upon request to the Contractor.

HBO therapy should not be a replacement for other standard successful therapeutic measures. Depending on the response of the individual patient and the severity of the original problem, treatment may range from less than 1 week to 1-2 months' duration, the average being 2 to 4 weeks. The use of Hyperbaric Oxygen Therapy for more than 2 months, (30 days for the treatment of diabetic wounds) regardless of the condition of the patient, may be subject to post payment medical review for medical necessity.

Evaluation and Management (E/M) CPT codes for physician visits may be billed on the same day as an HBO treatment only if the service provided by the physician is above and beyond the services required to continue with and perform the actual HBO treatment. An E/M service should not be billed in addition to the HBO service for wound assessment, wound monitoring, and redressing of the wound, as all of these elements are integral to the continuance and delivery of the HBO therapy. However, if the documentation supports an additional procedure other than HBO is performed (such as debridement), or another health issue (other than the wound) is addressed and treated, that service or procedure may be billable in addition to the HBO. All elements of CPT code descriptors must be met in order to bill debridement or other services, as well as all Medicare requirements.

Notice: This LCD imposes utilization guideline limitations. Despite Medicare's allowing up to these maximums, each patient’s condition and response to treatment must medically warrant the number of services reported for payment. Medicare requires the medical necessity for each service reported to be clearly demonstrated in the patient’s medical record. Medicare expects that patients will not routinely require the maximum allowable number of services.

Sources of Information and Basis for Decision

1. Novitas Solutions, Inc. LCD Hyperbaric Oxygen (HBO) Therapy (L35021) and First Coast Services Options, Inc. Hyperbaric Oxygen (HBO) Therapy (L36504).

2. Reference is made throughout this document to Undersea and Hyperbaric Medical Society, Hyperbaric Oxygen Therapy INDICATIONS- 13th Edition, Lindell K Weaver, M.D., Chair and Editor.

61. Mechem CC, Manaker S. Hyperbaric oxygen therapy. Last reviewed January 2012. UpToDate Inc. Waltham, MA.

65. Moon RE. Hyperbaric oxygen treatment for air or gas embolism. *UHM.* 2014;41(2):159-166.

89. Undersea and Hyperbaric Medical Society, Hyperbaric Oxygen Therapy INDICATIONS- 13th Edition

99. Other Contractor Policies
Start Date of Comment Period 06/02/2016
End Date of Comment Period 08/08/2016

All information on this web site is compiled directly from information obtained from the Center for Medicare and Medicaid Services (CMS) and from its Contractors.

CodeMap® has made every reasonable effort to ensure the accuracy of the information contained on this web site. However, the ultimate responsibility for correct coding and claims submission lies with the provider of services. CodeMap® makes no representation, warranty, or guarantee that this compilation of Medicare information is error-free or that the use of this information will result in Medicare coverage and subsequent payment of claims. Final coverage and payment of claims are subject to many factors exclusively controlled by CMS and its contractors.

No part of this web page or data displayed may be redistributed or used without the express written consent of Wheaton Partners, LLC.

05/06/2016 04:00:48 71.204.0.59