Hyperbaric Oxygen Therapy Indications
Thirteenth Edition
The Hyperbaric Oxygen Therapy Committee Report

Lindell K. Weaver MD
Chair and Editor
Undersea and Hyperbaric Medical Society
21 West Colony Place, Suite 280
Durham, NC 27705
USA
No responsibility is assumed by the Publisher or Editor for any injury and or damage to persons or property as a matter of product liability, negligence or otherwise, or from any use or operation of any methods, product, instructions, or ideas contained in the material herein. No suggested test or procedure should be carried out unless, in the reader’s judgment, its risk is justified. Because of rapid advances in the medical sciences, we recommend that the independent verification of diagnoses and drug dosages be made.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher.

Copyright © 2014 Undersea and Hyperbaric Medical Society
Printed and bound in the United States of America
International Standard Book Number: 978-1930536-73-9
Published by:
Best Publishing Company
631 U.S. Highway 1, Suite 307
North Palm Beach, Florida 33408
Table of Contents

Preface vi
Members of the Hyperbaric Oxygen Therapy Committee vii
I. **Background** ix
II. **Hyperbaric Oxygen: Definition** ix
III. **Utilization Review for Hyperbaric Oxygen Therapy** xi
IV. **Acceptance (Addition) of New Indications for Hyperbaric Oxygen Therapy** xi
V. **List of Abbreviations** xii
VI. **Author Biographies** xiv

Part I. Indications

1. **Air or Gas Embolism** 1
2. **Arterial Insufficiencies**
 A. **Central Retinal Artery Occlusion** 11
 B. **Enhancement of Healing in Selected Problem Wounds** 25
3. **Carbon Monoxide Poisoning** 47
4. **Clostridial Myonecrosis (Gas Gangrene)** 67
5. **Compromised Grafts and Flaps** 77
6. **Crush Injuries and Skeletal Muscle-Compartment Syndromes** 91
7. **Decompression Sickness** 105
8. **Delayed Radiation Injuries (Soft Tissue and Bony Necrosis)** 113
9. **Idiopathic Sudden Sensorineural Hearing Loss** 139
10. **Intracranial Abscess** 153
11. **Necrotizing Soft Tissue Infections** 159
12. **Refractory Osteomyelitis** 179
13. **Severe Anemia** 209
14. **Thermal Burns** 217

Part II. Additional Considerations

15. **Mechanisms of Action** 241
16. **Side Effects** 247
17. **Pretreatment and Preconditioning** 253
18. **Randomized Controlled Trials in Diving and Hyperbaric Medicine** 259
19. **Regulatory Considerations for a Traumatic Brain Injury (TBI) Indication** 283
20. **Hyperbaric Oxygen (HBO₂) for Post-Concussive Syndrome/Chronic TBI:**
 Product Summary 287
 Appendix: Approved Indications for HBO₂ Therapy 319
 Reference Index 321
 Index 403
Preface

The application of air under pressure (hyperbaric air) in an effort to treat certain respiratory diseases dates back to 1662.[1] The medicinal uses of oxygen were first reported by Beddoes in 1794,[2] while the first article describing adjunctive uses of hyperbaric oxygen therapy (HBO₂) was written by Fontaine in 1879,[3] who constructed a mobile operating room which could be pressurized. He observed that pressurized patients were not as cyanotic after the use of nitrous oxide during surgery as compared to patients who had been treated in the traditional fashion. In addition, he noted that hernias were much easier to reduce. Also around that time, the work of Paul Bert[4] and J. Lorrain-Smith[5] showed that oxygen under pressure had potentially deleterious consequences on the human body with side effects that included central nervous system and pulmonary toxicity. The efforts of Churchill-Davidson and Boerema in the 1950s and 60s spurred the modern scientific use of clinical hyperbaric medicine.

In 1967, the Undersea Medical Society was founded by six United States Naval diving and submarine medical officers with the explicit goal of promoting diving and undersea medicine. In short order, this society expanded to include those interested in clinical hyperbaric medicine. In recognition of the dual interest by members in both diving and clinical applications of compression therapy, the society was renamed The Undersea and Hyperbaric Medical Society in 1986. It remains the leading not for profit organization dedicated to reporting scientifically and medically efficacious and relevant information pertaining to hyperbaric and undersea medicine.

In 1972, an ad hoc Medicare committee was formed to evaluate the efficacy of hyperbaric oxygen therapy for specified medical conditions. The focus was to determine if this treatment modality showed therapeutic benefit and merited insurance coverage. The growth of the body of scientific evidence that had developed over the preceding years supported this endeavor and recognition for the field. In 1976, the Hyperbaric Oxygen Therapy Committee became a standing committee of what was then the UMS. The first Hyperbaric Oxygen Committee Report was published in 1977 and served as guidance for practitioners and scientists interested in HBO₂. The report is usually published every three to five years and was last published in 2008. Additionally, this document continues to be used by the Centers for Medicare and Medicaid Services and other third party insurance carriers in determining payment.

The report, currently in its thirteenth edition, has grown in size and depth to reflect the evolution of the literature. To date, the committee recognizes fourteen indications. It is believed that the scientific evidence supports the use of HBO₂ for treatment of these medical conditions from both a clinical practice standpoint and insurance coverage perspective.

The Undersea and Hyperbaric Medical Society continues to maintain its reputation for its expertise on compression therapy. With leading experts authoring chapters in their respective fields, this publication continues to provide the most current and up to date guidance and support for scientists and practitioners of hyperbaric oxygen therapy.

John S. Peters, FACHE
President, Best Publishing Company
References

5. Lorrain-Smith J. The pathological effects due to increase of oxygen tension in the air breathed. J Physiol. 1899; 24:19-35.
Members of the Hyperbaric Oxygen Therapy Committee

Lindell Weaver MD (Chair)
Dirk Bakker MD
Robert Barnes MD
Richard C. Baynosa MD
Michael Bennett MD
Enrico Camporesi MD
Paul Cianci MD
John Feldmeier DO
Laurie Gesell MD
Neil B. Hampson MD
Brett Hart MD
Harriet Hopf MD
Irving Jacoby MD
Richard Moon MD
Heather Murphy-Lavoie MD
Ben Slade MD
Michael Strauss MD
Stephen Thom MD, PhD
Keith Van Meter MD
Wilbur T. Workman MS
Eugene R. Worth MD
William Zamboni MD
I. Background
The Undersea and Hyperbaric Medical Society (UHMS) is an international scientific organization which was founded in 1967 to foster exchange of data on the physiology and medicine of commercial and military diving. Over the intervening years, the interests of the society have expanded to include clinical hyperbaric oxygen therapy. The society has grown to over 2,000 members and has established the largest repository of diving and hyperbaric research collected in one place. Clinical information, books, technical reports, and an extensive bibliographic database of thousands of scientific papers represent the results of over 100 years of research by military and university laboratories around the world, and are contained in the UHMS Schilling Library, holdings which are now part of the Duke University Library, Durham, NC. The results of ongoing research and clinical aspects of undersea and hyperbaric medicine are reported annually at scientific meetings and published bi-monthly in Undersea and Hyperbaric Medicine. Historically, the society supported two journals, Undersea Biomedical Research and the Journal of Hyperbaric Medicine, which were merged in 1993.

The UHMS headquarters is located at:
21 West Colony Place, Suite 280
Durham, North Carolina 27705 USA

Phone: 919-490-5140 / 1-877-533-UHMS (8467)
Fax: 919-490-5149
E-mail: uhms@uhms.org
Website: www.uhms.org

II. Hyperbaric Oxygen: Definition
The UHMS defines hyperbaric oxygen (HBO₂) as an intervention in which an individual breathes near 100% oxygen intermittently while inside a hyperbaric chamber that is pressurized to greater than sea level pressure (1 atmosphere absolute [ATA], which converts to 101.325 kilopascals [kPa]). For clinical purposes, the pressure must equal or exceed 1.4 ATA (141.86 kPa) while breathing near 100% oxygen. The United States Pharmacopoeia (USP) and Compressed Gas Association (CGA) Grade A specify medical grade oxygen to be not less than 99.0% by volume, and the National Fire Protection Association (NFPA) specifies USP medical grade oxygen.

In certain circumstances hyperbaric oxygen therapy represents the primary treatment modality while in others it is an adjunct to surgical or pharmacologic interventions.

The NFPA classifies chambers according to occupancy for the purposes of establishing minimum construction and operation requirements.¹

1) Class A – Human, multiple occupancy
2) Class B – Human, single occupancy
3) Class C – Animal, no human occupancy

Clinical treatments can be carried out in either a Class A (multi-) or Class B (mono-) chamber system. A Class A system holds two or more people (patients, observers, Photograph courtesy of Lindell Weaver MD, of Intermountain Medical Center, Murray, Utah. Fink DL8 multipurpose chamber, Fink Engineering, Melbourne, Australia.
and/or support personnel); the chamber is pressurized with compressed air while the patients breathe near 100% oxygen via masks, head hoods, or endotracheal tubes. In a Class B system, the entire chamber is pressurized with near 100% oxygen and the patient breathes the ambient chamber oxygen directly. It is important to note that Class B systems can be and are pressurized with compressed air while the patients breathe near 100% oxygen via masks, head hoods, or endotracheal tubes.

According to the UHMS definition and the determination of The Centers for Medicare and Medicaid Services (CMS) and other third party carriers, breathing medical grade 100% oxygen at 1 atmosphere of pressure or exposing isolated parts of the body to 100% oxygen does not constitute HBO\textsubscript{2} therapy. The patient must receive the oxygen by inhalation within a pressurized chamber. Current information indicates that pressurization should be to 1.4 ATA (141.86 kPa) or higher.

The literature of HBO\textsubscript{2} treatment began appearing in the 1930s as navies and universities around the world began studies in oxygen breathing at elevated pressures as a way to more safely decompress divers and to treat decompression sickness and arterial gas embolism. During the 1940s, HBO\textsubscript{2} was incorporated in standard treatment tables of the U.S. Navy. Extensive research on oxygen toxicity was undertaken to establish safe limits, overall safety, and medical and physiologic aspects of the compressed gas environment. These efforts led to a vast body of literature which underpins modern HBO\textsubscript{2} therapy.

In recognition of the need for meticulous scrutiny of emerging clinical applications of HBO\textsubscript{2}, the UHMS established the Hyperbaric Oxygen Therapy Committee in 1976. The committee was charged with the responsibility of continuously reviewing research and clinical data and rendering recommendations regarding clinical efficacy and safety of HBO\textsubscript{2}. To achieve this goal, the multispecialty committee is comprised of practitioners and scientific investigators in the fields of internal medicine, infectious diseases, pharmacology, emergency medicine, general surgery, orthopedic surgery, trauma surgery, thoracic surgery, otolaryngology, oral and maxillofacial surgery, anesthesiology, pulmonology, critical care, radiation oncology, and aerospace medicine.

Since 1976, the committee has met annually to review research and clinical data. From the twenty-eight indications for which third party reimbursement was recommended in the 1976 and 1979 reports, the number of approved indications has been refined to fourteen in the current report. These indications are those for which \textit{in vitro} and \textit{in vivo} pre-clinical research data as well as extensive positive clinical experience and study have become convincing.
Evidence considered by the committee includes sound physiologic rationale; in vivo or in vitro studies that demonstrate effectiveness; controlled animal studies; prospective controlled clinical studies; and extensive clinical experience from multiple, recognized hyperbaric medicine centers.

The committee requires that experimental and clinical evidence submitted for the efficacy of HBO₂ treatment for a disorder be at least as convincing as that for any other currently accepted treatment modality for that disorder. Studies in progress will continue to clarify mechanisms of action, optimal oxygen dosage, duration of exposure times, frequency of treatments, and patient selection criteria. The committee recommends third party reimbursement of HBO₂ therapy for the disorders included in the accepted conditions category. Currently, most insurance carriers have established HBO₂ reimbursement policies.

The committee also reviews cost effectiveness and has established guidelines for each entity. Results show that, in addition to its clinical efficacy, HBO₂ therapy yields direct cost savings by successfully resolving a high percentage of difficult and expensive disorders, thereby minimizing prolonged hospitalization. However, the committee recommends that each individual hyperbaric facility, whether monoplace or multiplace, establish its own charges consistent with the actual local costs of providing such service.

References
1. NFPA 99: Health care facilities code handbook. 2012 ed. 14.1.2.1; 14.1.2.2; A14.1.2.2.

III. Utilization Review for Hyperbaric Oxygen Therapy
A utilization review section is presented for each approved HBO₂ indication. It is recommended that utilization review be obtained if the number of HBO₂ treatments is to exceed the recommended number of treatments for that indication. Such review should involve discussion of the clinical case with another qualified hyperbaric medicine physician from an outside institution. If that individual agrees that additional HBO₂ therapy is warranted, treatment may exceed the usually prescribed number of treatments.

IV. Acceptance (Addition) of New Indications for Hyperbaric Oxygen Therapy
New indications for HBO₂ therapy are considered for acceptance at the meeting of the Hyperbaric Oxygen Therapy Committee during the annual meeting of the Undersea and Hyperbaric Medical Society. This consideration can be initiated from within the committee itself or may result in response to a written request by a non-committee member. When a new indication is considered for acceptance, a position paper is written. The information must summarize the in vitro, in vivo, and clinical aspects of the new indication for HBO₂ therapy. Two members of the Hyperbaric Oxygen Committee review the position paper and each writes a critique. The position paper and critiques are presented to the Hyperbaric Oxygen Committee. A consensus of the Hyperbaric Oxygen Committee is required for recommending the indication be moved into the approved category. If the committee determines that a new condition merits approval, it makes this recommendation to the executive committee of the Society which ultimately votes to approve or disapprove the new indication.
CHAPTER 1
AIR OR GAS EMBOLISM

Richard E. Moon M.D.

Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina

References

Copyright © 2014 Undersea and Hyperbaric Medical Society, Inc.

Copyright © 2014 Undersea and Hyperbaric Medical Society, Inc.

CHAPTER 2A
ARTERIAL INSUFFICIENCIES: CENTRAL RETINAL ARTERY OCCLUSION

Heather Murphy-Lavoie,1 Frank Butler,2 Catherine Hagan3

1 Associate Clinical Professor, Section of Emergency Medicine, and Associate Program Director, Louisiana State University; Undersea Hyperbaric Medicine Fellowship, Louisiana State University Medical Center, New Orleans, Louisiana USA

2 CAPT MC USN (Retired), Ophthalmology, Chairman, Committee on Tactical Combat Casualty Care, Adjunct Associate Professor, Military and Emergency Medicine Uniformed Services University of the Health Sciences, Bethesda, Maryland USA

3 Department of Ophthalmology, Camp Lejeune, North Carolina USA

References

11. Anderson B, Saltzman H, Heyman A. The effects of hyperbaric oxygenation on retinal

52. Weiss JN. Hyperbaric oxygen treatment of nonacute central retinal artery occlusion.

CHAPTER 2B
ARTERIAL INSUFFICIENCES: ENHANCEMENT OF HEALING IN SELECTED PROBLEM WOUNDS

Eugene R. Worth M.D., M.Ed., 1 William H. Tettelbach M.D., FACP, 2 Harriet W. Hopf M.D. 3

1 Medical Director, Hyperbaric Medicine, Dixie Regional Medical Center, St. George, Utah
2 Medical Director, Wound Care & Ostomy, Intermountain Healthcare, Urban Central Region, Salt Lake City, Utah
3 Professor and Vice Chair of Anesthesiology and Adjunct Professor of Bioengineering, University of Utah, Salt Lake City, Utah

References

Copyright © 2014 Undersea and Hyperbaric Medical Society, Inc.

60. Adams KR, Mader JT. Aminoglycoside potentiation with adjunctive hyperbaric oxygen therapy in experimental Pseudomonas aeruginosa osteomyelitis. Undersea Hyperbaric Medical Society Annual Scientific Meeting, 1987;Abstract 70.

95. Hyperbaric Oxygen Therapy for Wound Healing – Part I. Blue Cross Blue Shield Association TEC, Technology Assessment, August 1999. USA.

122. Canadian Agency for Drugs and Technologies in Health. Adjunctive hyperbaric oxygen therapy for diabetic foot ulcers. HTA Issue 75, March 2007, 23 pages

CHAPTER 3
CARBON MONOXIDE POISONING

Lindell K. Weaver M.D.

Hyperbaric Medicine Division, Intermountain LDS Hospital, Salt Lake City, Utah; Hyperbaric Medicine, Intermountain Medical Center, Murray, Utah; University of Utah School of Medicine, Salt Lake City, Utah

References

8. ACGIH. Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists; 2005.

93. Coburn RF, Mayers LB. Myoglobin O2 tension determined from measurement of

94. Brown SD, Piantadosi CA. In vivo binding of carbon monoxide to cytochrome c oxidase in

95. Thom SR, Ohnishi ST, Ischiropoulos H. Nitric oxide released by platelets inhibits neutrophil
Sep;128(1):105-10.

96. Thom SR, Ischiropoulos H. Mechanism of oxidative stress from low levels of carbon

97. Thom SR, Xu YA, Ischiropoulos H. Vascular endothelial cells generate peroxynitrite in

98. Brown SD, Piantadosi CA. Reversal of carbon monoxide-cytochrome c oxidase binding by

99. D'Amico G, Lam F, Hagen T, Moncada S. Inhibition of cellular respiration by endogenously

100. Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv

inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol.
2003 Sep;93(3):142-6.

102. Daugherty WP, Levasseur JE, Sun D, Rockswold GL, Bullock MR. Effects of hyperbaric
oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral

103. Lou M, Chen Y, Ding M, Eschenfelder CC, Deuschl G. Involvement of the mitochondrial
ATP-sensitive potassium channel in the neuroprotective effect of hyperbaric oxygenation after

104. Stewart RJ, Yamaguchi KT, Mason SW, Roshdieh BB, Dabassi NI, Ness NT. Tissue ATP
levels in burn injured skin treated with hyperbaric oxygen. Undersea Biomed Res.
1989;16(Suppl):53.

105. Piantadosi CA, Tatro L, Zhang J. Hydroxyl radical production in the brain after CO hypoxia

Copyright © 2014 Undersea and Hyperbaric Medical Society, Inc.

192. Trapp WG, Lepawsky M. One hundred percent survival in fire life-threatening cyanide poisoning victims treated by a therapeutic spectrum including hyperbaric oxygen. Eighth annual conference on clinical applications of hyperbaric oxygen; June 8-10, 1983; Long Beach, CA1983.

CHAPTER 4
CLOSTRIDIAL MYONECROSIS (GAS GANGRENE)

Dirk J. Bakker M.D., Ph.D.

Academic Medical Center, University of Amsterdam, The Netherlands

References

27. Schoemaker G. Oxygen tension measurements under hyperbaric conditions. In: Boerema I,

42. Brummelkamp WH. Considerations on hyperbaric oxygen therapy at three atmospheres absolute for clostridial infections type welchii. Ann NY Acad Sci 1965; 117:688-699.

55. Oriani G. Acute indications for hyperbaric oxygen therapy-final report. In: Marroni A,

56. Wattel F (chair). Recommendations of the jury of the 7th European Consensus Conference on Hyperbaric Medicine. Anaerobic and aerobic infections including gas gangrene. Type I Recommendation, level C. Lille University Hospital Publication 2004 (available through the ECHM secretariat).
CHAPTER 5
COMPROMISED GRAFTS AND FLAPS

Dr. Richard C. Baynosa, Dr. William A. Zamboni

University of Nevada School of Medicine, Division of Plastic Surgery, Las Vegas, Nevada

References

41. Yucel A, Bayramicli. Effects of hyperbaric oxygen treatment and heparin on the survival of

CHAPTER 6
CRUSH INJURIES AND SKELETAL MUSCLE-COMPARTMENT SYNDROMES

Michael B. Strauss M.D.

Medical Director, Hyperbaric Medicine, Long Beach Memorial Medical Center, Long Beach, California; Clinical Professor Orthopedic Surgery, University of California Irvine School of Medicine Irvine, California; Orthopaedic Consultant PAVE (Prevention of Amputations in Veterans Everywhere) Clinic, Veterans Affairs Health Care Medical Center, Long Beach, California

References

38. Slack WD, Thomas DA, DeJode LR. Hyperbaric oxygen in the treatment of trauma, ischemic
disease of limbs and varicose ulceration. Proceeding of the Third International Conference on
Research Council Publ 1404, Washington DC, 621-624.

oxygen therapy in the management of crush injury and traumatic ischemia: an evidence-based

41:333-339.

42. Nylander G, Otamiri T, Larsson J, et al. Lipid products in post-ischemic skeletal muscle and

43. Bartlett RL, Stroman RT, Nickels M, et al. Rabbit model of the use of fasciotomy and
hyperbaric oxygen in the treatment of compartment syndrome. Undersea and Hyperb Med

44. Fitzpatrick DT, Murphy PT, Bruce M. Adjunctive treatment of compartment syndrome with

45. Oriani G. Acute indications of HBO therapy - final report. Handbook of hyperbaric medicine

46. Strauss MB, Hart GB. Hyperbaric oxygen and the skeletal muscle-compartment syndrome.

47. The American Heart Association evidence-based scoring system, Circul, (2006), 114:1761-
1791.

48. Berwick DM. Health services research and quality of care assignments for the 1990’s.

49. Strauss MB. The role of hyperbaric oxygen in the surgical management of chronic refractory

50. Brighton CT. Quotation. Hosp Tribune (May 9, 1977); p5.

87(A):1801-1809.

CHAPTER 7
DECOMPRESSION SICKNESS

Richard E. Moon M.D.

Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina

References

CHAPTER 8
DELAYED RADIATION INJURIES (SOFT TISSUE AND BONY NECROSIS)

John J. Feldmeier D.O., FACRO, FUHM

Professor Emeritus of Radiation Oncology, University of Toledo Medical Center, Toledo, Ohio

References

12. Marx RE, Ehler WJ, Tayapongsak P, Pierce LW. Relationship of oxygen dose to

92. Videtic GM, Venkatesan VM. Hyperbaric oxygen corrects sacral plexopathy due to

CHAPTER 9
IDIOPATHIC SUDDEN SENSORINEURAL HEARING LOSS

Steven M. Piper, 1 Heather Murphy-Lavoie, 2 Tracy Leigh LeGros 3

1 Staff Physician, Van Meter and Associates, Harvey, Louisiana

2 Associate Clinical Professor, Section of Emergency Medicine, and Associate Program Director, Louisiana State University Undersea Hyperbaric Medicine Fellowship, Louisiana State University Medical Center, New Orleans, Louisiana

3 Associate Clinical Professor, Section of Emergency Medicine, and Program Director, Louisiana State University Undersea Hyperbaric Medicine Fellowship, Louisiana State University Medical Center, New Orleans, Louisiana

References

9. Alimoglu Y, Inci E, Edizer DT, Ozdilek A, Aslan M. Efficacy comparison of oral steroid, intratympanic steroid, hyperbaric oxygen and oral steroid and hyperbaric oxygen treatments in

CHAPTER 10
INTRACRANIAL ABSCESS

Robert C. Barnes M.D., ABIM-IM, ID ABPM-UHM

Hyperbaric Center Sacred Heart Medical Center, Springfield, Oregon

References

CHAPTER 11
NECROTIZING SOFT TISSUE INFECTIONS

Irving “Jake” Jacoby M.D., FACP, FACEP, FAAEM

Emeritus Clinical Professor of Medicine and Surgery, Department of Emergency Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Attending Physician, Department of Emergency Medicine and Division of Hyperbaric Medicine, University of California, San Diego, Medical Center, San Diego, California

References

46. Cullen TS. A progressively enlarging ulcer of abdominal wall involving the skin and fat, following drainage of an abdominal abscess, apparently of appendiceal origin. Surg Gynecol Obstetr 1924; 38:579-582.

CHAPTER 12
REFRACTORY OSTEOMYELITIS

Brett B. Hart M.D.

Naval Hospital, Pensacola, Florida

References

42. Lazzarini L, Lipsky BA, Mader JT. Antibiotic treatment of osteomyelitis: what have we

86. Jauregui LE, Hageage G, Martin M. Oral enoxacin versus conventional intravenous

146. Gehanno P. Ciprofloxacin in the treatment of malignant external otitis. Chemotherapy,

CHAPTER 13
SEVERE ANEMIA

Keith W. Van Meter M.D.

Louisiana State University-Health Sciences Center, Department of Medicine, Section of
Emergency Medicine, New Orleans, Louisiana

References

1. Van Slyke DD, Neill JM. The determination of gases in blood and other solutions by vacuum

2. Chance EM, Chance B. Oxygen delivery to tissue: calculation of oxygen gradient in the

3. Fick A. Uber die messung des Blut Quantums in der Herzentrikeln, SB Phys-Med Ges
Werzburg 16, 1870.

4. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and

5. Goodnough LT, Schander A, Brecher ME. Transfusion medicine: looking into the future.

7. Vamvakas EC. Transfusion associated cancer recurrence and post-operative infection: meta-

Hyperbaric Medical Society, 1977.

HT, eds. Hyperbaric Medicine Practice 2nd ed. revised. Flagstaff: Best Publishing Company,

23. Elliot DP, Paton BC. Effect of 100% oxygen at 1 and 3 atmospheres on dogs subjected to hemorrhagic hypotension. Surg 1965;57:401-408.

Copyright © 2014 Undersea and Hyperbaric Medical Society, Inc.

CHAPTER 14
THERMAL BURNS

Paul Cianci M.D., FACS, FUHM, 1 John B. Slade Jr. M.D., 2 Ronald M. Sato M.D., 3 Julia Faulkner 4

1 Medical Director, Department of Hyperbaric Medicine, Doctors Medical Center San Pablo, California
2 North Bay Center for Wound Care, Vaca Valley Hospital, Vacaville, California
3 Medical Director, Outpatient Burn/Wound Clinic, Doctors Medical Center, San Pablo, California
4 Research Assistant, Doctors Medical Center, San Pablo, California

REFERENCES

12. Alexander JW, Meakins JL. A physiological basis for the development of opportunistic

52. Veltkamp R, Siebing DA, Schwab S, Schwaninger M. Hyperbaric oxygen reduces blood-

53. Kolski JM, Mazolewski PJ, Stephenson LL, Zamboni WA. Effect of hyperbaric oxygen

54. Shandling AH, Ellestad MH, Hart GB, Strauss M, Stavitsky Y. Hyperbaric oxygen and

55. Sharifi M, Fares W, Abdel-Karim I, Adler D. Usefulness of hyperbaric oxygen therapy to
inhibit restenosis after percutaneous coronary intervention for acute myocardial infarction or

56. Thomas MP, Brown LA, Sponseller DR, Guyton DP. Myocardial infarct size reduction by
the synergistic effect of hyperbaric oxygen and recombinant tissue plasminogen activator. Am
Heart J 1990;120:791-800.

57. Xu N, Li Z, Luo X. Effects of hyperbaric oxygen therapy on the changes in serum sIL-2R
and Fn in severe burn patients. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 1999;

58. Deitch EA, Xu DZ, Franko L, et al. Evidence favoring the role of the gut as a cytokine

59. Deitch EA. Role of the gut lymphatic system in multiple organ failure. Current Opin Crit
Care 2001;7:92-8.

60. Hohn DC, McKay RD, Halliday B, Hunt TK. Effect of oxygen tension on the microbicidal

61. Allen DB, Maguire JJ, Mahdavian M et al. Wound hypoxia and acidosis limit neutrophil

62. Mader JT, Brown GL, Guckian JC, Reinarz JA. A mechanism for the amelioration of
hyperbaric oxygen of experimental staphylococcal osteomyelitis in rabbits. J Inf Disease

63. Hussman J, Hebebrand D, Erdmann D, Moticka J. Lymphocyte subpopulations in spleen and
blood after early wound debridement and acute/chronic treatment with hyperbaric oxygen.

64. Bilic I, Petri NM, Bota B. Effects of hyperbaric oxygen therapy on experimental burn wound

65. Turkaslan T, Yogum N, Cimsit M, Solakoglu S, Ozdemir C, Ozyo Z. Is HBOT treatment

104. Personal experience of the authors in a regional burn center.

106. Cost statistics (1997-98) from hospital patient accounts, home facility of the authors.

CHAPTER 15
MECHANISMS OF ACTION

Enrico M Camporesi M.D., 1 Gerardo Bosco M.D., Ph.D. 2

1 Emeritus Professor of Surgery /Anesthesiology and Molecular Pharmacology/Physiology, University of South Florida, Tampa, Florida; Attending Anesthesiologist, Tampa General Hospital, Research Member, FGTBA, LLC, Tampa, Florida

2 Assistant Professor, Department of Biomedical Sciences, University of Padova, ATIP Hyperbaric Medical Center, Padova, Italy

References

Copyright © 2014 Undersea and Hyperbaric Medical Society, Inc.

CHAPTER 16
SIDE EFFECTS

Enrico M. Camporesi M.D.

Emeritus Professor of Surgery /Anesthesiology and Molecular Pharmacology/Physiology, University of South Florida, Tampa, Florida

References

CHAPTER 17
HYPERBARIC OXYGEN PRETREATMENT AND PRECONDITIONING

Enrico M. Camporesi M.D., Gerardo Bosco M.D., Ph.D.

1 Emeritus Professor of Surgery /Anesthesiology and Molecular Pharmacology/Physiology, University of South Florida, Tampa, Florida; Attending Anesthesiologist, Tampa General Hospital, Research Member, FGTBA, LLC, Tampa, Florida

2 Assistant Professor, Department of Biomedical Sciences, University of Padova, ATIP Hyperbaric Medical Center, Padova, Italy

References

CHAPTER 18
RANDOMIZED CONTROLLED TRIALS IN DIVING AND HYPERBARIC MEDICINE

Michael H. Bennett

Associate Professor, UNSW Medicine, University of NSW and Academic Director, Wales Anaesthesia, Prince of Wales Hospital, Randwick, NSW Australia

References

APPENDIX 1: Clinical trials in hyperbaric medicine

This list includes abstracts when there has been no more complete report.

CARBON MONOXIDE POISONING

CRUSH INJURY

GRAFTS AND FLAPS

TISSUE INJURY DUE TO RADIATION

WOUND HEALING

ACUTE MYOCARDIAL ISCHEMIA AND CARDIAC SURGERY

ACUTE THERMAL BURNS

TRAUMATIC BRAIN INJURY

STROKE

COGNITIVE PERFORMANCE AND PSYCHOLOGY

CEREBRAL PALSY

HEADACHE

MULTIPLE SCLEROSIS

ENHANCEMENT OF RADIOTHERAPY

Proceedings of the Fifth International Hyperbaric Congress. Simon Fraser University 1974; II:813-819.

151. Van Den Brenk HA. Hyperbaric oxygen in radiation therapy. An investigation of dose-

AUDIOVESTIBULAR

154. Goto F, Fujita T, Kitoni Y, Kanno M, Kamei T, Ishii H. Hyperbaric oxygen and stellate ganglion blocks for idiopathic sudden hearing loss. Acta Otolaryngol 1979;88:335-342. (Editor’s note - it is unclear from the article if the patients were randomized.)

OPHTHALMOLOGY

174. Jalabi MW, Abidia A, Kuhan G. The safety and effect of hyperbaric oxygen therapy in

PHYSIOLOGY AND PHARMACOLOGY

SPORTS AND ATHLETIC PERFORMANCE

MISCELLANEOUS

207. Vezzani G, Caberti L, Cantadori L, Mordacci M, Nicolopolou A, Pizzola A, Valesi M. Hyperbaric oxygen therapy (HBO₂) for idiopathic avascular femoral head necrosis (IAFHN): a

CHAPTER 19
REGULATORY CONSIDERATIONS FOR A TRAUMATIC BRAIN INJURY (TBI)

INDICATION
Lindell K. Weaver,1,2,3 Cheryl Dicks,4 Kayla Deru,1,2 R. Scott Miller5

1 Hyperbaric Medicine Division, Intermountain LDS Hospital, Salt Lake City, Utah;
2 Hyperbaric Medicine, Intermountain Medical Center, Murray, Utah;
3 University of Utah School of Medicine, Salt Lake City, Utah;
4 Clinical Research Management, Inc., Ft. Detrick, Md.;
5 U.S. Army Medical Materiel Development Activity, Ft. Detrick, Md.

References

1. CFR Title 21 Part 312. Investigational New Drug Application.

2. CFR Title 21 Part 812. Investigational Device Exemptions.

CHAPTER 20
HYPERBARIC OXYGEN (HBO₂) FOR POST-CONCUSSIVE SYNDROME/CHRONIC TBI: PRODUCT SUMMARY

Col Brian F. McCrary D.O., MPH (USAF);¹ Lindell Weaver M.D.; ²,³ LCDR Kevin Marrs Ph.D. (USN);¹ COL R. Scott Miller M.D. (USA);¹ Cheryl Dicks;⁴ Kayla Deru;² Nicole Close Ph.D.; ⁵ COL Marla DeJong Ph.D. (USAF)⁶

¹ U.S. Army Medical Materiel Development Activity, Ft. Detrick, Maryland;
² Hyperbaric Medicine, Intermountain LDS Hospital, Salt Lake City, Utah;
³ Hyperbaric Medicine, Intermountain Medical Center, Murray, Utah;
⁴ Clinical Research Management, Inc., Ft. Detrick, Maryland;
⁵ EmpiriStat Inc., Mt. Airy, Maryland;
⁶ U.S. Air Force School of Aerospace Medicine, Wright-Patterson AFB, Ohio

References

22. Cicerone KD, Azulay J (2002). Diagnostic utility of attention measures in postconcussion

